Nonlinear wavelet approximation in anisotropic Besov spaces

被引:9
|
作者
Leisner, C [1 ]
机构
[1] Florida Atlantic Univ, Honors Coll, Jupiter, FL 33458 USA
关键词
wavelets; multiresolution; anisotropic; Besov spaces; B-splines; nonlinear approximation; interpolation spaces;
D O I
10.1512/iumj.2003.52.2224
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given anisotropic: wavelet decompositions associated with the smoothness beta, beta = (beta(1), . . . , beta(d)), beta(1), . . . , beta(d) > 0 of multivariate functions as measured in anisotropic Besov spaces B-beta, we give the rate of nonlinear approximation with respect to the L-P-norm, 1 less than or equal to p < infinity, of functions f is an element of B-beta by these wavelets. We also prove that, among a general class of anisotropic wavelet decompositions of a function f is an element of B-beta the anisotropic wavelet decomposition associated with beta gives the optimal rate of compression of the wavelet decomposition of f.
引用
收藏
页码:437 / 455
页数:19
相关论文
共 50 条
  • [1] Wavelet characterizations for anisotropic Besov spaces
    Hochmuth, R
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 12 (02) : 179 - 208
  • [2] Application of wavelet bases in linear and nonlinear approximation to functions from Besov spaces
    Burnaev E.V.
    Computational Mathematics and Mathematical Physics, 2006, 46 (12) : 2051 - 2060
  • [3] Wavelet decompositions of anisotropic Besov spaces
    Garrigós, G
    Tabacco, A
    MATHEMATISCHE NACHRICHTEN, 2002, 239 : 80 - 102
  • [4] Product Besov and Triebel–Lizorkin Spaces with Application to Nonlinear Approximation
    Athanasios G. Georgiadis
    George Kyriazis
    Pencho Petrushev
    Constructive Approximation, 2021, 53 : 39 - 83
  • [5] Product Besov and Triebel-Lizorkin Spaces with Application to Nonlinear Approximation
    Georgiadis, Athanasios G.
    Kyriazis, George
    Petrushev, Pencho
    CONSTRUCTIVE APPROXIMATION, 2021, 53 (01) : 39 - 83
  • [6] Nonlinear piecewise polynomial approximation beyond Besov spaces
    Karaivanov, B
    Petrushev, P
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2003, 15 (03) : 177 - 223
  • [7] Wavelet statistical models and Besov spaces
    Choi, H
    Baraniuk, R
    WAVELET APPLICATIONS IN SIGNAL AND IMAGE PROCESSING VII, 1999, 3813 : 489 - 501
  • [8] Spaces of Besov-Sobolev type and a problem on nonlinear approximation
    Dominguez, Oscar
    Seeger, Andreas
    Street, Brian
    Van Schaftingen, Jean
    Yung, Po-Lam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (04)
  • [9] Approximation spaces, limiting interpolation and Besov spaces
    Cobos, Fernando
    Dominguez, Oscar
    JOURNAL OF APPROXIMATION THEORY, 2015, 189 : 43 - 66
  • [10] Wavelet bases in generalized Besov spaces
    Almeida, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) : 198 - 211