Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress

被引:66
|
作者
Li, Qian [1 ,2 ]
Yang, An [1 ]
Zhang, Wen-Hao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Bot, State Key Lab Vegetat & Environm Change, Beijing 100093, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Beijing Inst Life Sci, Res Network Global Change Biol, Beijing 100093, Peoples R China
来源
BMC PLANT BIOLOGY | 2017年 / 17卷
基金
中国国家自然科学基金;
关键词
Dongdao-4; Osmotic regulation; ROS detoxifying mechanism; Jigeng-88; Oryza sativa L; Rice; Moderate salt stress; EXPRESSION PROFILES; SALINITY TOLERANCE; ABIOTIC STRESSES; GENE; RESPONSES; PROLINE; PHOTOSYNTHESIS; ARABIDOPSIS; RESISTANCE; REDUCTASE;
D O I
10.1186/s12870-017-1089-0
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Moderate salt stress, which often occurs in most saline agriculture land, suppresses crop growth and reduces crop yield. Rice, as an important food crop, is sensitive to salt stress and rice genotypes differ in their tolerance to salt stress. Despite extensive studies on salt tolerance of rice, a few studies have specifically investigated the mechanism by which rice plants respond and tolerate to moderate salt stress. Two rice genotypes differing in their tolerance to saline-alkaline stress, Dongdao-4 and Jigeng-88, were used to explore physiological and molecular mechanisms underlying tolerance to moderate salt stress. Results: Dongdao-4 plants displayed higher biomass, chlorophyll contents, and photosynthetic rates than Jigeng-88 under conditions of salt stress. No differences in K+ concentrations, Na+ concentrations and Na+/K+ ratio in shoots between Dongdao-4 and Jigeng-88 plants were detected when challenged by salt stress, suggesting that Na+ toxicity may not underpin the greater tolerance of Dongdao-4 to salt stress than that of Jigeng-88. We further demonstrated that Dongdao-4 plants had greater capacity to accumulate soluble sugars and proline (Pro) than Jigeng-88, thus conferring greater tolerance of Dongdao-4 to osmotic stress than Jigeng-88. Moreover, Dongdao-4 suffered from less oxidative stress than Jigeng-88 under salt stress due to higher activities of catalase (CAT) in Dongdao-4 seedlings. Finally, RNA-seq revealed that Dongdao-4 and Jigeng-88 differed in their gene expression in response to salt stress, such that salt stress changed expression of 456 and 740 genes in Dongdao-4 and Jigeng-88, respectively. Conclusion: Our results revealed that Dongdao-4 plants were capable of tolerating to salt stress by enhanced accumulation of Pro and soluble sugars to tolerate osmotic stress, increasing the activities of CAT to minimize oxidative stress, while Na+ toxicity is not involved in the greater tolerance of Dongdao-4 to moderate salt stress.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance
    Dionisio-Sese, ML
    Tobita, S
    JOURNAL OF PLANT PHYSIOLOGY, 2000, 157 (01) : 54 - 58
  • [22] Comparative physiological analysis in the tolerance to salinity and drought individual and combination in two cotton genotypes with contrasting salt tolerance
    Ibrahim, Wasim
    Qiu, Cheng-Wei
    Zhang, Can
    Cao, Fangbin
    Zhu Shuijin
    Wu, Feibo
    PHYSIOLOGIA PLANTARUM, 2019, 165 (02) : 155 - 168
  • [23] The influence of salinity on cell ultrastructures and photosynthetic apparatus of barley genotypes differing in salt stress tolerance
    Zahra, Jabeen
    Nazim, Hussain
    Cai, Shengguan
    Han, Yong
    Wu, Dezhi
    Zhang, Binlin
    Haider, Shamsi Imran
    Zhang, Guoping
    ACTA PHYSIOLOGIAE PLANTARUM, 2014, 36 (05) : 1261 - 1269
  • [24] Haplotyping of Rice Genotypes Using Simple Sequence Repeat Markers Associated with Salt Tolerance
    Chowdhury, A. D.
    Haritha, G.
    Sunitha, T.
    Krishnamurthy, S. L.
    Divya, B.
    Padmavathi, G.
    Ram, T.
    Sarla, N.
    RICE SCIENCE, 2016, 23 (06) : 317 - 325
  • [25] Melatonin delays leaf senescence and enhances salt stress tolerance in rice
    Liang, Chengzhen
    Zheng, Guangyong
    Li, Wenzhen
    Wang, Yiqin
    Hu, Bin
    Wang, Hongru
    Wu, Hongkai
    Qian, Yangwen
    Zhu, Xin-Guang
    Tan, Dun-Xian
    Chen, Shou-Yi
    Chu, Chengcai
    JOURNAL OF PINEAL RESEARCH, 2015, 59 (01) : 91 - 101
  • [26] Phenotypic and genotypic screening of rice genotypes at seedling stage for salt tolerance
    Bhowmik, Salil Kumar
    Titov, Soubir
    Islam, Mirza Mofazzal
    Siddika, Ayesha
    Sultana, Sharmin
    Haque, M. D. Shahidul
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2009, 8 (23): : 6490 - 6494
  • [27] Comparative Physiological and Transcriptomic Analyses of Two Contrasting Pepper Genotypes under Salt Stress Reveal Complex Salt Tolerance Mechanisms in Seedlings
    Zhang, Tao
    Sun, Kaile
    Chang, Xiaoke
    Ouyang, Zhaopeng
    Meng, Geng
    Han, Yanan
    Shen, Shunshan
    Yao, Qiuju
    Piao, Fengzhi
    Wang, Yong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (17)
  • [28] RAPD Markers Associated with Salt Tolerance in Soybean Genotypes Under Salt Stress
    Khan, Faheema
    Hakeem, Khalid Rehman
    Siddiqi, Tariq O.
    Ahmad, Altaf
    APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2013, 170 (02) : 257 - 272
  • [29] Drought stress tolerance in rice: a critical insight
    Choudhury, Debapriya
    Mukherjee, Chandrama
    Dey, Shinjan
    Dutta, Sikha
    PLANT SCIENCE TODAY, 2024, 11 (01): : 241 - 257
  • [30] Comparative Transcriptome Analysis of Two Sweet Sorghum Genotypes with Different Salt Tolerance Abilities to Reveal the Mechanism of Salt Tolerance
    Chen, Chengxuan
    Shang, Xiaoling
    Sun, Meiyu
    Tang, Sanyuan
    Khan, Aimal
    Zhang, Dan
    Yan, Hongdong
    Jiang, Yanxi
    Yu, Feifei
    Wu, Yaorong
    Xie, Qi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (04)