Overexpression of Dehydroascorbate Reductase Confers Enhanced Tolerance to Salt Stress in Rice Plants (Oryza sativa L. japonica)

被引:29
|
作者
Kim, Y. S. [1 ]
Kim, I. S. [1 ]
Shin, S. Y. [1 ]
Park, T. H. [2 ]
Park, H. M. [3 ]
Kim, Y. H. [3 ]
Lee, G. S. [3 ]
Kang, H. G. [4 ]
Lee, S. H. [5 ]
Yoon, H. S. [1 ]
机构
[1] Kyungpook Natl Univ, Dept Biol, Taegu 702701, South Korea
[2] Daegu Univ, Dept Hort, Gyongsan, South Korea
[3] Natl Acad Agr Sci, Genom Div, RDA, Suwon, South Korea
[4] Jeju Natl Univ, Subtrop Hort Res Inst, Cheju, South Korea
[5] Gyeongsang Natl Univ, Dept Biol, Jinju, South Korea
基金
新加坡国家研究基金会;
关键词
ascorbate recycling; dehydroascorbate reductase; ion leakage; redox state; salinity; transgenic rice; VITAMIN-C CONTENT; ASCORBIC-ACID; TOBACCO PLANTS; OXIDATIVE STRESS; ABIOTIC STRESS; HETEROLOGOUS EXPRESSION; GLUTATHIONE-REDUCTASE; ANTIOXIDANT ENZYMES; LIPID-PEROXIDATION; OZONE TOLERANCE;
D O I
10.1111/jac.12078
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Dehydroascorbate reductase (DHAR, EC 1.8.5.1) helps to maintain redox pools of ascorbate (AsA) by recycling dehydroascorbate (DHA) to AsA. To investigate whether DHAR influences the acquired tolerance of rice plants to abiotic stresses, cDNA encoding DHAR (OsDHAR1) was isolated from rice and used to develop OsDHAR1-overexpressing transgenic rice plants regulated by a maize ubiquitin promoter. The incorporation and expression of the transgene was confirmed by polymerase chain reaction (PCR) and semi-quantitative reverse transcription PCR, real-time PCR, Western blot and enzyme activity. The overexpression of OsDHAR1 greatly increased the DHAR activity and the AsA/DHA ratio, following increase in AsA content and decrease in DHA content. In addition, the enzyme activity of monodehydroascorbate reductase, glutathione reductase and ascorbate peroxidase, which are related to the ascorbate-glutathione systems, was enhanced in the presence and the absence of salt stress in homozygous transgenic rice plants (OsDHAR1-OX1, -OX2) harbouring Ubi::OsDHAR1. In addition, OsDHAR1-expressing transgenic rice plants enhanced the redox state by reducing both hydroperoxide and malondialdehyde levels under salt and methyl viologen (MV) stress conditions, which led to better plant growth, ion leakage and quantum yield (Fv/Fm). Therefore, our results show that the overexpression of OsDHAR1 increases the adaptation of rice plants to salt stress, by maintaining the AsA pool, ion homoeostasis and redox homoeostasis. Finally, the findings of this study indicate that OsDHAR1 plays an important role in attenuating the deleterious effects of various abiotic stresses.
引用
收藏
页码:444 / 456
页数:13
相关论文
共 50 条
  • [31] Photosynthesis enhanced oxidative stress tolerance in high-yield rice varieties (Oryza sativa var. japonica L.) in the field
    Wei, X. D.
    Jin, L.
    Li, X.
    GENETICS AND MOLECULAR RESEARCH, 2016, 15 (03)
  • [32] Evaluation of salt tolerance in rice (Oryza sativa L.) under in vitro conditions
    Thamodharan, G.
    Mathankumar, P.
    Veeramani, T.
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (03) : 1043 - 1055
  • [33] Esterase as molecular marker for salt tolerance in regenerated plants of rice, Oryza sativa L
    Swapna, T.S.
    Indian Journal of Experimental Biology, 2002, 40 (09) : 1056 - 1059
  • [34] Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.)
    Li, Qian
    Yang, An
    Zhang, Wen-Hao
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (22) : 6431 - 6444
  • [35] Salt stress induces oxidative stress in rice (Oryza sativa L.), relationships between antioxidative enzymes activities and salt tolerance
    Thu, HNT
    Shim, IS
    Kobayashi, K
    Usui, K
    PLANT AND CELL PHYSIOLOGY, 2004, 45 : S57 - S57
  • [36] Inducing salt tolerance in rice (Oryza sativa L.) varieties by gamma radiation
    Ayan, Alp
    Celik, Ozge
    Meric, Sinan
    Atak, Cimen
    JOURNAL OF BIOTECHNOLOGY, 2017, 256 : S103 - S104
  • [37] Salt stress tolerance in rice (Oryza sativa L.): A proteomic overview of recent advances and future prospects
    Hasan, Md Mahadi
    Rahman, Md Atikur
    Corpas, Francisco J.
    Rahman, Md. Mezanur
    Jahan, Mohammad Shah
    Liu, Xu-Dong
    Ghimire, Shantwana
    Alabdallah, Nadiyah M.
    Wassem, Muhammad
    Alharbi, Basmah M.
    Raza, Ali
    Fang, Xiangwen
    PLANT STRESS, 2024, 11
  • [38] Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica)
    Young-Saeng Kim
    Il-Sup Kim
    Mi-Jung Bae
    Yong-Hoe Choe
    Yul-Ho Kim
    Hyang-Mi Park
    Hong-Gyu Kang
    Ho-Sung Yoon
    Planta, 2013, 237 : 1613 - 1625
  • [39] Crystallization and preliminary X-ray crystallographic studies of dehydroascorbate reductase (DHAR) from Oryza sativa L. japonica
    Do, Hackwon
    Kim, Il-Sup
    Kim, Young-Saeng
    Shin, Sun-Young
    Kim, Jin-Ju
    Mok, Ji-Eun
    Park, Seong-Im
    Wi, Ah Ram
    Park, Hyun
    Kim, Han-Woo
    Yoon, Ho-Sung
    Lee, Jun Hyuck
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2014, 70 : 781 - 785
  • [40] Overexpression of annexin gene in rice (Oryza sativa L.) for salinity and water stress
    Subhadra Rani Mallick
    Kundansing Rajpalsing Jadhao
    Gyana Ranjan Rout
    In Vitro Cellular & Developmental Biology - Plant, 2021, 57 : 86 - 101