Scaling behavior of the tensile strength of viscocohesive granular aggregates

被引:6
作者
Thanh-Trung Vo [1 ]
机构
[1] Danang Architecture Univ, Bridge & Rd Dept, Da Nang City 550000, Vietnam
关键词
NUMERICAL-SIMULATION; BREAKAGE; RHEOLOGY; MICROSTRUCTURE; AGGLOMERATION; PARTICLE; POWDER; FLOWS; DRUM;
D O I
10.1103/PhysRevE.103.042902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We numerically analyze the tensile strength of a single wet agglomerate modeled as a viscocohesive aggregate impacting a flat surface by using the discrete-element simulations. The viscocohesive agglomerate composed of primary spherical particles with the inclusion of the interstitial liquid in the form of the capillary bridges characterized by the cohesive and viscous forces between particles is extracted from a cuboidal sample of granular materials by applying a spherical probe. The tensile strength is measured from the impact test of a wet agglomerate by systematically varying different values of the surface tension of the interstitial liquid, the liquid viscosity, and the impact speed. We show that the tensile stress increases immediately when the collision occurs between the agglomerate and the flat surface. The peak of the tensile stress obtained after the collision, then decreases smoothly with increasing the particle movement. The maximum tensile stress is defined to be the tensile strength of such agglomerate. It is remarkable that the normalized tensile strength of such agglomerate can be well described as a function of a dimensionless impact number that incorporates the capillary number and Stokes number (calculated from the surface tension and the viscosity of the liquid and the impact rate of the agglomerate), thus providing the confirmation for the unified representation of the liquid properties and the impact rate of wet granular media.
引用
收藏
页数:8
相关论文
共 58 条
  • [41] Schafer J, 1996, J PHYS I, V6, P5, DOI 10.1051/jp1:1996129
  • [42] Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime
    Scheel, M.
    Seemann, R.
    Brinkmann, M.
    Di Michiel, M.
    Sheppard, A.
    Herminghaus, S.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (49)
  • [43] Statistical investigation of agglomerate breakage based on combined stochastic microstructure modeling and DEM simulations
    Spettl, Aaron
    Dosta, Maksym
    Antonyuk, Sergiy
    Heinrich, Stefan
    Schmidt, Volker
    [J]. ADVANCED POWDER TECHNOLOGY, 2015, 26 (03) : 1021 - 1030
  • [44] A comprehensive review on process and engineering aspects of pharmaceutical wet granulation
    Suresh, P.
    Sreedhar, I.
    Vaidhiswaran, R.
    Venugopal, A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2017, 328 : 785 - 815
  • [45] Tensile Strength of Porous Dust Aggregates
    Tatsuuma, Misako
    Kataoka, Akimasa
    Tanaka, Hidekazu
    [J]. ASTROPHYSICAL JOURNAL, 2019, 874 (02)
  • [46] Additive rheology of complex granular flows
    Thanh Trung Vo
    Nezamabadi, Saeid
    Mutabaruka, Patrick
    Delenne, Jean-Yves
    Radjai, Farhang
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [47] Agglomeration of wet particles in dense granular flows
    Thanh Trung Vo
    Nezamabadi, Saeid
    Mutabaruka, Patrick
    Delenne, Jean-Yves
    Izard, Edouard
    Pellenq, Roland
    Radjai, Farhang
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2019, 42 (09)
  • [48] Evolution of wet agglomerates inside inertial shear flow of dry granular materials
    Thanh-Trung Vo
    Mutabaruka, Patrick
    Nezamabadi, Saeid
    Delenne, Jean-Yves
    Radjai, Farhang
    [J]. PHYSICAL REVIEW E, 2020, 101 (03)
  • [49] Mechanical strength of wet particle agglomerates
    Thanh-Trung Vo
    Mutabaruka, Patrick
    Nezamabadi, Saeid
    Delenne, Jean-Yves
    Izard, Edouard
    Pellenq, Roland
    Radjai, Farhang
    [J]. MECHANICS RESEARCH COMMUNICATIONS, 2018, 92 : 1 - 7
  • [50] Numerical simulation of diametrical compression tests on agglomerates
    Thornton, C
    Ciomocos, MT
    Adams, MJ
    [J]. POWDER TECHNOLOGY, 2004, 140 (03) : 258 - 267