Digital Images Clarity Quality Evaluation using Non-subsampled Contourlet Transform

被引:0
作者
Li, Yi [1 ]
Liu, Guanzhong [2 ]
机构
[1] Cent S Univ, Sch Business, Changsha, Hunan, Peoples R China
[2] Tsinghua Univ, Acad Arts & Design, Beijing, Peoples R China
来源
SECOND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 1, PROCEEDINGS | 2009年
关键词
image clarity; quality evaluation; non-subsampled contourlet transform;
D O I
10.1109/ISCID.2009.87
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nowadays, more and more digital images are used in industrial design field. The tools for digital images quality evaluation are needed to select good images. In this paper, we propose one clarity quality metric using the non-subsampled contourlet transform. The proposed metric is based on the high frequency and low frequency coefficients with the non-subsampled contourlet transform. Experimental results on many industrial design images show that the proposed metric can evaluate the clarity quality effectively.
引用
收藏
页码:318 / 321
页数:4
相关论文
共 50 条
[41]   Patch-based Salient Region Detection Using Statistical Modeling in the Non-subsampled Contourlet Domain [J].
Abkenar, M. Rezaie ;
Sadreazami, H. ;
Ahmad, M. Omair .
2017 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2017, :2743-2746
[42]   Improved partial differential equation-based total variation approach to non-subsampled contourlet transform for medical image denoising [J].
Kollem, Sreedhar ;
Reddy, Katta Ramalinga ;
Rao, Duggirala Srinivasa .
MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (02) :2663-2689
[43]   SAR Image Denoising Using the Non-Subsampled Contour let Transform and Morphological Operators [J].
Mejia Munoz, Jose Manuel ;
Ochoa Dominguez, Humberto de Jesus ;
Ortega Maynez, Leticia ;
Vergara Villegas, Osslan Osiris ;
Cruz Sanchez, Vianey Guadalupe ;
Gordillo Castillo, Nelly ;
Gutierrez Casas, Efren David .
ADVANCES IN ARTIFICIAL INTELLIGENCE, MICAI 2010, PT I, 2010, 6437 :337-347
[44]   Improved partial differential equation-based total variation approach to non-subsampled contourlet transform for medical image denoising [J].
Sreedhar Kollem ;
Katta Ramalinga Reddy ;
Duggirala Srinivasa Rao .
Multimedia Tools and Applications, 2021, 80 :2663-2689
[45]   Image fusion for synthetic aperture radar and multispectral images based on sub-band-modulated non-subsampled contourlet transform and pulse coupled neural network methods [J].
Wang, X. L. ;
Chen, C. X. .
IMAGING SCIENCE JOURNAL, 2016, 64 (02) :87-93
[46]   Brain image fusion using the parameter adaptive-pulse coupled neural network (PA-PCNN) and non-subsampled contourlet transform (NSCT) [J].
Sa. I. Ibrahim ;
Gh. S. El-Tawel ;
M. A. Makhlouf .
Multimedia Tools and Applications, 2024, 83 :27379-27409
[47]   Brain image fusion using the parameter adaptive-pulse coupled neural network (PA-PCNN) and non-subsampled contourlet transform (NSCT) [J].
Ibrahim, Sa. I. ;
El-Tawel, Gh. S. ;
Makhlouf, M. A. .
MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) :27379-27409
[48]   Non-subsampled contourlet domain image de-noising employing joint statistical model [J].
Fan, Fengfei ;
Gai, Shan .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (01) :721-731
[49]   Multimodal medical image fusion using residual network 50 in non subsampled contourlet transform [J].
Rao, K. Koteswara ;
Swamy, K. Veera .
IMAGING SCIENCE JOURNAL, 2023, 71 (08) :677-690
[50]   Non-Subsampled Contourlets Based Synthetic Aperture Radar Images Segmentation [J].
Zhang Jian ;
Chen Xiaowei .
EPLWW3S 2011: 2011 INTERNATIONAL CONFERENCE ON ECOLOGICAL PROTECTION OF LAKES-WETLANDS-WATERSHED AND APPLICATION OF 3S TECHNOLOGY, VOL 1, 2011, :142-144