An Improved K-Means Algorithm Based on Kurtosis Test

被引:3
|
作者
Wang, Tingxuan [1 ]
Gao, Junyao [1 ]
机构
[1] Beijing Inst Technol, 5 South Zhongguancun St, Beijing, Peoples R China
来源
2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, AUTOMATION AND CONTROL TECHNOLOGIES (AIACT 2019) | 2019年 / 1267卷
关键词
D O I
10.1088/1742-6596/1267/1/012027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Clustering is a process of classifying data into different classes and has become an important tool in data mining. Among many clustering algorithms, the K-means clustering algorithm is widely used because of its simplicity and high efficiency. However, the traditional K-means algorithm can only find spherical clusters, and is also susceptible to noise points and isolated points, which makes the clustering results affected. To solve these problems, this paper proposes an improved K-means algorithm based on kurtosis test. The improved algorithm can improve the adaptability of clustering algorithm to complex shape datasets while reducing the impact of outlier data on clustering results, so that the algorithm results can be more accurate. The method used in our study is known as kurtosis test and Monte Carlo method. We validate our theoretical results in experiments on a variety of datasets. The experimental results show that the proposed algorithm has larger external indicators of clustering performance metrics, which means that the accuracy of clustering results is significantly improved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Clustering of college students based on improved K-means algorithm
    Fan Z.
    Sun Y.
    Luo H.
    Journal of Computers (Taiwan), 2017, 28 (06) : 195 - 203
  • [42] Improved K-means Algorithm Based on the Clustering Reliability Analysis
    Zhang, Hong
    Yu, Hong
    Li, Ying
    Hu, Baofang
    PROCEEDINGS OF THE 2015 INTERNATIONAL SYMPOSIUM ON COMPUTERS & INFORMATICS, 2015, 13 : 2516 - 2523
  • [43] An Improved Differential Privacy K-means Algorithm Based on MapReduce
    Yao, Shunyuan
    2018 11TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2018, : 141 - 145
  • [44] An Improved Community Detection Algorithm Based on DCT and K-Means
    Li, Lin
    Fan, Kefeng
    Gong, Jiezhong
    Peng, Hao
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, INFORMATION MANAGEMENT AND NETWORK SECURITY, 2016, 47 : 293 - 297
  • [45] Flow cluster algorithm based on improved K-means method
    Dong, Shi
    Zhou, Dingding
    Ding, Wei
    Gong, Jian
    IETE JOURNAL OF RESEARCH, 2013, 59 (04) : 326 - 333
  • [46] Clustering of College Students Based on Improved K-means Algorithm
    Fan, Zhongxiang
    Yan, Sun
    2016 INTERNATIONAL COMPUTER SYMPOSIUM (ICS), 2016, : 676 - 679
  • [47] An Improved K-means Algorithm Based on Weighted Euclidean Distance
    Ge, Fuhua
    Luo, Yi
    2012 THIRD INTERNATIONAL CONFERENCE ON THEORETICAL AND MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE (ICTMF 2012), 2013, 38 : 117 - 120
  • [48] Digital image clustering based on improved k-means algorithm
    Gao Xi
    Hu Zi-mu
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2020, 35 (02) : 173 - 179
  • [49] An Improved Sampling K-means Clustering Algorithm Based on MapReduce
    Zhang Ya-ling
    Wang Ya-nan
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [50] Order Batch Optimization Based on Improved K-Means Algorithm
    Zu, Qiaohong
    Feng, Rui
    HUMAN CENTERED COMPUTING, 2019, 11956 : 700 - 705