Tutorial: Brain-inspired computing using phase-change memory devices

被引:241
作者
Sebastian, Abu [1 ]
Le Gallo, Manuel [1 ]
Burr, Geoffrey W. [2 ]
Kim, Sangbum [3 ]
BrightSky, Matthew [3 ]
Eleftheriou, Evangelos [1 ]
机构
[1] IBM Res Zurich, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] IBM Res Almaden, 650 Harry Rd, San Jose, CA 95120 USA
[3] IBM Corp, TJ Watson Res Ctr, 1101 Kitchawan Rd, Yorktown Hts, NY 10598 USA
基金
欧洲研究理事会;
关键词
NETWORK; ACCELERATION; NEURONS; SYSTEM; SPIKE;
D O I
10.1063/1.5042413
中图分类号
O59 [应用物理学];
学科分类号
摘要
There is a significant need to build efficient non-von Neumann computing systems for highly data-centric artificial intelligence related applications. Brain-inspired computing is one such approach that shows significant promise. Memory is expected to play a key role in this form of computing and, in particular, phase-change memory (PCM), arguably the most advanced emerging non-volatile memory technology. Given a lack of comprehensive understanding of the working principles of the brain, brain-inspired computing is likely to be realized in multiple levels of inspiration. In the first level of inspiration, the idea would be to build computing units where memory and processing co-exist in some form. Computational memory is an example where the physical attributes and the state dynamics of memory devices are exploited to perform certain computational tasks in the memory itself with very high areal and energy efficiency. In a second level of brain-inspired computing using PCM devices, one could design a co-processor comprising multiple cross-bar arrays of PCM devices to accelerate the training of deep neural networks. PCM technology could also play a key role in the space of specialized computing substrates for spiking neural networks, and this can be viewed as the third level of brain-inspired computing using these devices. (C) 2018 Author(s).
引用
收藏
页数:15
相关论文
共 64 条
[1]   Equivalent-accuracy accelerated neural-network training using analogue memory [J].
Ambrogio, Stefano ;
Narayanan, Pritish ;
Tsai, Hsinyu ;
Shelby, Robert M. ;
Boybat, Irem ;
di Nolfo, Carmelo ;
Sidler, Severin ;
Giordano, Massimo ;
Bodini, Martina ;
Farinha, Nathan C. P. ;
Killeen, Benjamin ;
Cheng, Christina ;
Jaoudi, Yassine ;
Burr, Geoffrey W. .
NATURE, 2018, 558 (7708) :60-+
[2]  
[Anonymous], 2015, P IEEE INT EL DEV M
[3]  
[Anonymous], 1997, Neural Computation
[4]   Neural correlations, population coding and computation [J].
Averbeck, BB ;
Latham, PE ;
Pouget, A .
NATURE REVIEWS NEUROSCIENCE, 2006, 7 (05) :358-366
[5]   Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations [J].
Benjamin, Ben Varkey ;
Gao, Peiran ;
McQuinn, Emmett ;
Choudhary, Swadesh ;
Chandrasekaran, Anand R. ;
Bussat, Jean-Marie ;
Alvarez-Icaza, Rodrigo ;
Arthur, John V. ;
Merolla, Paul A. ;
Boahen, Kwabena .
PROCEEDINGS OF THE IEEE, 2014, 102 (05) :699-716
[6]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[7]   Visual Pattern Extraction Using Energy-Efficient "2-PCM Synapse" Neuromorphic Architecture [J].
Bichler, Olivier ;
Suri, Manan ;
Querlioz, Damien ;
Vuillaume, Dominique ;
DeSalvo, Barbara ;
Gamrat, Christian .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (08) :2206-2214
[8]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[9]  
Boybat I, 2017, 2017 13TH CONFERENCE ON PH.D. RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME), P13, DOI 10.1109/PRIME.2017.7974095
[10]   Nanosecond switching in GeTe phase change memory cells [J].
Bruns, G. ;
Merkelbach, P. ;
Schlockermann, C. ;
Salinga, M. ;
Wuttig, M. ;
Happ, T. D. ;
Philipp, J. B. ;
Kund, M. .
APPLIED PHYSICS LETTERS, 2009, 95 (04)