Universal energy level tailoring of self-organized hole extraction layers in organic solar cells and organic-inorganic hybrid perovskite solar cells

被引:225
作者
Lim, Kyung-Geun [1 ]
Ahn, Soyeong [1 ]
Kim, Young-Hoon [1 ]
Qi, Yabing [2 ]
Lee, Tae-Woo [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, San 31 Hyoja Dong, Pohang 790784, Gyungbuk, South Korea
[2] Okinawa Inst Sci & Technol, Grad Univ OIST, Energy Mat & Surface Sci Unit EMSS, 1919-1 Tancha, Onna Son, Okinawa 9040495, Japan
关键词
POWER CONVERSION EFFICIENCY; HALIDE PEROVSKITES; HIGHLY EFFICIENT; PERFORMANCE; ALIGNMENT; MOLECULES; IMPROVE; FILMS;
D O I
10.1039/c5ee03560k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tailoring the interface energetics between a polymeric hole extraction layer (HEL) and a photoactive layer (PAL) in organic photovoltaics (OPVs) and organic-inorganic hybrid perovskite solar cells (PrSCs) is very important to maximize open circuit voltage (Voc), power conversion efficiency (PCE), and device lifetime. In principle, when Fermi-level pinning and a vacuum level shift take place between the HEL and PAL, they give rise to an energy level offset between the HEL and the valence band maximum (VBM) (or the highly occupied molecular orbital (HOMO) in the case of organic photoactive materials) of the PAL and then Voc loss. However, here we show that the Voc loss at the interface can be overcome by universal energy level tailoring of a self-organized HEL (SOHEL) between the HEL and PAL irrespective of photoactive materials. A SOHEL composed of a conducting polymer and a perfluorinated ionomer (PFI) is effectively used to study the interface energetics in OPVs and PrSCs. We systematically tailored the interface energy level of the SOHEL to remove the energy offset at the interface and understand clearly the universal energy level alignment with the diverse photoactive materials of OPVs and PrSCs. The Fermi-level of the HEL is pinned to the midgap state of photoactive materials, which is about 0.6-0.7 eV above the VBM or HOMO. However, the interface energy state of the PFI-enriched surface layer of the SOHEL can be formed deeper below the Fermi-level by self-organized molecules so that it can match the top of the valence band of the photoactive materials. As a result, the energy offset at the interface between photoactive materials and the SOHEL can be significantly decreased to achieve high Voc and PCE. Furthermore, our SOHEL significantly prolonged the stability of OPVs (half lifetime: 2.84 year) compared with pristine PEDOT: PSS (half lifetime: 0.2 year) under continuous irradiation of air mass-1.5 global simulated sunlight at 100 mW cm(-2) due to the diffusion-blocking ability of the self-organized PFI at the surface of SOHELs for impurities from indium tin oxide.
引用
收藏
页码:932 / 939
页数:8
相关论文
共 56 条
[1]   Spontaneous Charge Transfer and Dipole Formation at the Interface Between P3HT and PCBM [J].
Aarnio, Harri ;
Sehati, Parisa ;
Braun, Slawomir ;
Nyman, Mathias ;
de Jong, Michel P. ;
Fahlman, Mats ;
Osterbacka, Ronald .
ADVANCED ENERGY MATERIALS, 2011, 1 (05) :792-797
[2]   Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH3NH3Pbl3 [J].
Agiorgousis, Michael L. ;
Sun, Yi-Yang ;
Zeng, Hao ;
Zhang, Shengbai .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (41) :14570-14575
[3]   Fermi level pinning by integer charge transfer at electrode-organic semiconductor interfaces [J].
Bokdam, Menno ;
Cakir, Deniz ;
Brocks, Geert .
APPLIED PHYSICS LETTERS, 2011, 98 (11)
[4]   Energy-Level Alignment at Organic/Metal and Organic/Organic Interfaces [J].
Braun, Slawomir ;
Salaneck, William R. ;
Fahlman, Mats .
ADVANCED MATERIALS, 2009, 21 (14-15) :1450-1472
[5]   Influence of the electrode work function on the energy level alignment at organic-organic interfaces [J].
Braun, Slawomir ;
de Jong, Michel P. ;
Osikowicz, Wojciech ;
Salaneck, William R. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[6]   Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes [J].
Brown, TM ;
Friend, RH ;
Millard, IS ;
Lacey, DJ ;
Butler, T ;
Burroughes, JH ;
Cacialli, F .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) :6159-6172
[7]   Materials Processing Routes to Trap-Free Halide Perovskites [J].
Buin, Andrei ;
Pietsch, Patrick ;
Xu, Jixian ;
Voznyy, Oleksandr ;
Ip, Alexander H. ;
Comin, Riccardo ;
Sargent, Edward H. .
NANO LETTERS, 2014, 14 (11) :6281-6286
[8]   Beyond Langevin Recombination: How Equilibrium Between Free Carriers and Charge Transfer States Determines the Open-Circuit Voltage of Organic Solar Cells [J].
Burke, Timothy M. ;
Sweetnam, Sean ;
Vandewal, Koen ;
McGehee, Michael D. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[9]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[10]   An Efficient Triple-Junction Polymer Solar Cell Having a Power Conversion Efficiency Exceeding 11% [J].
Chen, Chun-Chao ;
Chang, Wei-Hsuan ;
Yoshimura, Ken ;
Ohya, Kenichiro ;
You, Jingbi ;
Gao, Jing ;
Hong, Zirou ;
Yang, Yang .
ADVANCED MATERIALS, 2014, 26 (32) :5670-+