Structural and electrochemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations

被引:34
作者
Larsson, Peter [2 ]
Ahuja, Rajeev [2 ]
Liivat, Anti [1 ]
Thomas, John O. [1 ]
机构
[1] Uppsala Univ, Dept Chem Mat, SE-75121 Uppsala, Sweden
[2] Uppsala Univ, Dept Phys & Mat Sci, SE-75121 Uppsala, Sweden
关键词
Lithium iron silicate; Manganese substitution; Electronic structure; Electrochemistry; Density functional theory; AB-INITIO; CATHODE MATERIALS; PERFORMANCE; STABILITY; FE;
D O I
10.1016/j.commatsci.2009.10.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
DFT calculations are presented which probe the effect of low-concentration Mn substitution of the Fe-sites in Li2FeSiO4: the promising new and potentially cheap cathode material for upscaled Li-ion battery applications. The LixFe0.875Mn0.125SiO4 System investigated could be achieved by replacing 12.5% of the Fe-sites in 2 x 2 x 1 and 2 x 2 x 2 supercells by Mn ions. The evolution of Bader charges and partial densities of states (DOS) have been followed under a stepwise delithiation process. A clear structural distortion is seen to occur at the Mn-site on delithiation, suggesting possible structural instability. Oxidation of Mn beyond 3+ is calculated to occur at potentials in excess of 4.7 V, implying that oxidation of well separated (>10 angstrom) low-concentration Mn ions to Mn4+ is energetically unfavourable in the LixFe0.875Mn0.125SiO4 structure. This, together with previous DFT results for higher levels of Mn substitution into Li2FeSiO4, indicates that capacity increase in Li2Fe1 (-) yMnySiO4 through a > 1 electron redox reaction may not be so readily attainable in practice, either for high or low Mn concentrations. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:678 / 684
页数:7
相关论文
共 30 条
[21]   Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS [J].
Nyten, Anton ;
Stjerndahl, Marten ;
Rensmo, Hakan ;
Siegbahn, Hans ;
Armand, Michel ;
Gustafsson, Torbjoern ;
Edstroem, Kristina ;
Thomas, John O. .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (34) :3483-3488
[22]   The lithium extraction/insertion mechanism in Li2FeSiO4 [J].
Nyten, Anton ;
Kamali, Saeed ;
Haggstrom, Lennart ;
Gustafsson, Torbjorn ;
Thomas, John O. .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (23) :2266-2272
[23]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194
[24]  
Perdew JP, 1996, PHYS REV LETT, V77, P3865, DOI 10.1103/PhysRevLett.77.3865
[25]  
Ravet N., 1999, 196 ECS M HAW 17 22
[26]  
VAN A, 1998, PHYS REV B, V58, P4501
[27]   Oxidation energies of transition metal oxides within the GGA+U framework [J].
Wang, Lei ;
Maxisch, Thomas ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2006, 73 (19)
[28]   First-principles prediction of redox potentials in transition-metal compounds with LDA + U -: art. no. 235121 [J].
Zhou, F ;
Cococcioni, M ;
Marianetti, CA ;
Morgan, D ;
Ceder, G .
PHYSICAL REVIEW B, 2004, 70 (23) :1-8
[29]   Phase separation in LixFePO4 induced by correlation effects -: art. no. 201101 [J].
Zhou, F ;
Marianetti, CA ;
Cococcioni, M ;
Morgan, D ;
Ceder, G .
PHYSICAL REVIEW B, 2004, 69 (20) :201101-1
[30]   The electronic structure and band gap of LiFePO4 and LiMnPO4 [J].
Zhou, F ;
Kang, KS ;
Maxisch, T ;
Ceder, G ;
Morgan, D .
SOLID STATE COMMUNICATIONS, 2004, 132 (3-4) :181-186