Subquadratic Time Encodable Codes Beating the Gilbert-Varshamov Bound

被引:1
作者
Narayanan, Anand Kumar [1 ,2 ]
Weidnet, Matthew [3 ,4 ]
机构
[1] Sorbonne Univ, Lab Informat Paris 6, F-75005 Paris, France
[2] Sorbonne Univ, Inst Math Jussieu, F-75005 Paris, France
[3] CALTECH, Dept Math, Pasadena, CA 91125 USA
[4] Carnegie Mellon Univ, Comp Sci Dept, Pittsburgh, PA 15213 USA
关键词
Algebraic geometry codes; error correcting codes; explicit constructions; Gilbert-Varshamov bound; ALGEBRAIC-GEOMETRIC CODES; SECRET SHARING SCHEMES; FUNCTION-FIELDS; MINIMUM DISTANCE; REED-SOLOMON; INTRACTABILITY;
D O I
10.1109/TIT.2019.2930538
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We construct explicit algebraic geometry codes built from the Garcia-Stichtenoth function-field tower beating the Gilbert-Varshamov bound for alphabet sizes at least 19(2). Messages are identified with functions in certain Riemann-Roch spaces associated with divisors supported on multiple places. Encoding amounts to evaluating these functions at degree-one places. By exploiting algebraic structures particular to the Garcia-Stichtenoth tower, we devise an intricate deterministic omega/2 < 1.19 runtime exponent encoding and 1 + omega/2 < 2.19 expected runtime exponent randomized (unique and list) decoding algorithms. Here omega < 2.373 is the matrix multiplication exponent. If omega = 2, as widely believed, the encoding and decoding runtimes are respectively nearly linear and nearly quadratic. Prior to this work, encoding time of code families beating the Gilbert-Varshamov bound were quadratic or worse.
引用
收藏
页码:6010 / 6021
页数:12
相关论文
共 45 条
[1]   On the splitting of places in a tower of function fields meeting the Drinfeld-Vladut bound [J].
Aleshnikov, I ;
Kumar, PV ;
Shum, KW ;
Stichtenoth, H .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) :1613-1619
[2]  
[Anonymous], 2014, P 5 INN THEOR COMP S
[3]   An Improvement of the Gilbert-Varshamov Bound Over Nonprime Fields [J].
Bassa, Alp ;
Beelen, Peter ;
Garcia, Arnaldo ;
Stichtenoth, Henning .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (07) :3859-3861
[4]  
Ben-Aroya A., 2013, THEORY COMPUT, V9, P252
[5]  
Ben-Sasson E., 2017, INTERACTIVE ORACLE P
[6]   Interactive Oracle Proofs [J].
Ben-Sasson, Eli ;
Chiesa, Alessandro ;
Spooner, Nicholas .
THEORY OF CRYPTOGRAPHY, TCC 2016-B, PT II, 2016, 9986 :31-60
[7]   INHERENT INTRACTABILITY OF CERTAIN CODING PROBLEMS [J].
BERLEKAMP, ER ;
MCELIECE, RJ ;
VANTILBORG, HCA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (03) :384-386
[8]   Solving structured linear systems with large displacement rank [J].
Bostan, Alin ;
Jeannerod, Claude-Pierre ;
Schost, Eric .
THEORETICAL COMPUTER SCIENCE, 2008, 407 (1-3) :155-181
[9]  
Chen H, 2008, LECT NOTES COMPUT SC, V4965, P451
[10]  
Chen H, 2006, LECT NOTES COMPUT SC, V4117, P521