Stability and bifurcations in a nonlocal delayed reaction-diffusion population model

被引:52
作者
Chen, Shanshan [1 ,2 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Reaction diffusion equation; Nonlocal delay; Hopf bifurcation; Stability; TRAVELING-WAVE FRONTS; HOPF-BIFURCATION; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.jde.2015.08.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlocal delayed reaction diffusion equation with Dirichlet boundary condition is considered in this paper. It is shown that a positive spatially nonhomogeneous equilibrium bifurcates from the trivial equilibrium. The stability/instability of the bifurcated positive equilibrium and associated Hopf bifurcation are investigated, providing us with a complete picture of the dynamics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 240
页数:23
相关论文
共 50 条
  • [41] Monostable traveling waves for a time-periodic and delayed nonlocal reaction-diffusion equation
    Li, Panxiao
    Wu, Shi-Liang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [42] STABILITY AND HOPF BIFURCATIONS FOR A DELAYED DIFFUSION SYSTEM IN POPULATION DYNAMICS
    Yan, Xiang-Ping
    Li, Wan-Tong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (01): : 367 - 399
  • [43] Global dynamics of a nonlocal delayed reaction-diffusion equation on a half plane
    Hu, Wenjie
    Duan, Yueliang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [44] Dynamics of a delayed nonlocal reaction-diffusion heroin epidemic model in a heterogenous environment
    Djilali, Salih
    Chen, Yuming
    Bentout, Soufiane
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (01) : 273 - 307
  • [45] Traveling waves in nonlocal delayed reaction-diffusion bistable equations and applications
    Li, Kun
    He, Yanli
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (04) : 2769 - 2786
  • [46] Travelling wave fronts in nonlocal delayed reaction-diffusion systems and applications
    Pan, Shuxia
    Li, Wan-Tong
    Lin, Guo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (03): : 377 - 392
  • [47] Hopf bifurcation of a delayed reaction-diffusion model with advection term
    Ma, Li
    Wei, Dan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 212 (212)
  • [48] Traveling waves in a nonlocal, piecewise linear reaction-diffusion population model
    Autry, E. A.
    Bayliss, A.
    Volpert, V. A.
    NONLINEARITY, 2017, 30 (08) : 3304 - 3331
  • [49] Synchronized stability in a reaction-diffusion neural network model
    Wang, Ling
    Zhao, Hongyong
    PHYSICS LETTERS A, 2014, 378 (48) : 3586 - 3599
  • [50] Bifurcations and pattern formation in a generalized Lengyel-Epstein reaction-diffusion model
    Mansouri, Djamel
    Abdelmalek, Salem
    Bendoukha, Samir
    CHAOS SOLITONS & FRACTALS, 2020, 132