Stability and bifurcations in a nonlocal delayed reaction-diffusion population model

被引:52
作者
Chen, Shanshan [1 ,2 ]
Yu, Jianshe [1 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Guangdong, Peoples R China
[2] Harbin Inst Technol, Dept Math, Weihai 264209, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Reaction diffusion equation; Nonlocal delay; Hopf bifurcation; Stability; TRAVELING-WAVE FRONTS; HOPF-BIFURCATION; ASYMPTOTIC-BEHAVIOR; EQUATIONS; DYNAMICS; SYSTEMS;
D O I
10.1016/j.jde.2015.08.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A nonlocal delayed reaction diffusion equation with Dirichlet boundary condition is considered in this paper. It is shown that a positive spatially nonhomogeneous equilibrium bifurcates from the trivial equilibrium. The stability/instability of the bifurcated positive equilibrium and associated Hopf bifurcation are investigated, providing us with a complete picture of the dynamics. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:218 / 240
页数:23
相关论文
共 50 条
  • [1] Hopf bifurcations in a reaction-diffusion population model with delay effect
    Su, Ying
    Wei, Junjie
    Shi, Junping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (04) : 1156 - 1184
  • [2] Properties of Hopf bifurcation to a reaction-diffusion population model with nonlocal delayed effect
    Yan, Xiang-Ping
    Zhang, Cun-Hua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 385 : 155 - 182
  • [3] ENTIRE SOLUTIONS IN BISTABLE REACTION-DIFFUSION EQUATIONS WITH NONLOCAL DELAYED NONLINEARITY
    Wang, Zhi-Cheng
    Li, Wan-Tong
    Ruan, Shigui
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (04) : 2047 - 2084
  • [4] Stability of bifurcating periodic solutions in a delayed reaction-diffusion population model
    Yan, Xiang-Ping
    Li, Wan-Tong
    NONLINEARITY, 2010, 23 (06) : 1413 - 1431
  • [5] Hopf bifurcation in a spatial heterogeneous and nonlocal delayed reaction-diffusion equation
    Li, Yanqiu
    Zhou, Yibo
    Zhu, Lushuai
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [6] Symmetry-breaking bifurcations in a delayed reaction-diffusion equation
    Qu, Xiaowei
    Guo, Shangjiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [7] Patterns in a nonlocal time-delayed reaction-diffusion equation
    Guo, Shangjiang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [8] Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect
    Guo, Shangjiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (04) : 1409 - 1448
  • [9] TRAVELING WAVE SOLUTIONS IN A NONLOCAL REACTION-DIFFUSION POPULATION MODEL
    Han, Bang-Sheng
    Wang, Zhi-Cheng
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 1057 - 1076
  • [10] Nonlinear stability of traveling wave fronts for nonlocal delayed reaction-diffusion equations
    Lv, Guangying
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 1094 - 1106