Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells

被引:27
作者
Spadafora, Domenico [1 ]
Kozhukhar, Nataliya [2 ]
Chouljenko, Vladimir N. [3 ,4 ]
Kousoulas, Konstantin G. [3 ,4 ]
Alexeyev, Mikhail F. [2 ,5 ]
机构
[1] Univ S Alabama, Dept Pharmacol, Mobile, AL 36688 USA
[2] Univ S Alabama, Dept Physiol & Cell Biol, Mobile, AL 36688 USA
[3] Louisiana State Univ, Sch Vet Med, Div Biotechnol & Mol Med, Baton Rouge, LA 70803 USA
[4] Louisiana State Univ, Sch Vet Med, Dept Pathobiol Sci, Baton Rouge, LA 70803 USA
[5] Univ S Alabama, Ctr Lung Biol, Mobile, AL 36688 USA
基金
美国国家卫生研究院;
关键词
HEREDITARY OPTIC NEUROPATHY; XENOMITOCHONDRIAL CYBRIDS; GENE-EXPRESSION; SEQUENCE; MTDNA; ORGANIZATION; DEGRADATION; INHERITANCE; BIOGENESIS; TERMINUS;
D O I
10.1371/journal.pone.0154684
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (rho(0) phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating rho(0) cells of human, mouse and rat origin. We also demonstrate that rho(0) cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells.
引用
收藏
页数:18
相关论文
共 41 条
[1]   A retro-lentiviral system for doxycycline-inducible gene expression and gene knockdown in cells with limited proliferative capacity [J].
Alexeyev, Mikhail F. ;
Fayzulin, Rafik ;
Shokolenko, Inna N. ;
Pastukh, Viktoriya .
MOLECULAR BIOLOGY REPORTS, 2010, 37 (04) :1987-1991
[2]   SEQUENCE AND ORGANIZATION OF THE HUMAN MITOCHONDRIAL GENOME [J].
ANDERSON, S ;
BANKIER, AT ;
BARRELL, BG ;
DEBRUIJN, MHL ;
COULSON, AR ;
DROUIN, J ;
EPERON, IC ;
NIERLICH, DP ;
ROE, BA ;
SANGER, F ;
SCHREIER, PH ;
SMITH, AJH ;
STADEN, R ;
YOUNG, IG .
NATURE, 1981, 290 (5806) :457-465
[3]   Human xenomitochondrial cybrids - Cellular models of mitochondrial complex I deficiency [J].
Barrientos, A ;
Kenyon, L ;
Moraes, CT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (23) :14210-14217
[4]   A chemical enucleation method for the transfer of mitochondrial DNA to ρ° cells -: art. no. e98 [J].
Bayona-Bafaluy, MP ;
Manfredi, G ;
Moraes, CT .
NUCLEIC ACIDS RESEARCH, 2003, 31 (16)
[5]   DNA abandonment and the mechanisms of uniparental inheritance of mitochondria and chloroplasts [J].
Bendich, Arnold J. .
CHROMOSOME RESEARCH, 2013, 21 (03) :287-296
[6]   SEQUENCE AND GENE ORGANIZATION OF MOUSE MITOCHONDRIAL-DNA [J].
BIBB, MJ ;
VANETTEN, RA ;
WRIGHT, CT ;
WALBERG, MW ;
CLAYTON, DA .
CELL, 1981, 26 (02) :167-180
[7]   The impact of mitochondrial endosymbiosis on the evolution of calcium signaling [J].
Blackstone, Neil W. .
CELL CALCIUM, 2015, 57 (03) :133-139
[8]   The sites and topology of mitochondrial superoxide production [J].
Brand, Martin D. .
EXPERIMENTAL GERONTOLOGY, 2010, 45 (7-8) :466-472
[9]   The role of mitochondria in aging [J].
Bratic, Ana ;
Larsson, Nils-Goran .
JOURNAL OF CLINICAL INVESTIGATION, 2013, 123 (03) :951-957
[10]   The role of mitochondrial DNA mutation on neurodegenerative diseases [J].
Cha, Moon-Yong ;
Kim, Dong Kyu ;
Mook-Jung, Inhee .
EXPERIMENTAL AND MOLECULAR MEDICINE, 2015, 47 :e150-e150