Data-efficient deep learning of radiological image data for outcome prediction after endovascular treatment of patients with acute ischemic stroke

被引:81
作者
Hilbert, A. [1 ]
Ramos, L. A. [1 ,2 ]
van Os, H. J. A. [3 ]
Olabarriaga, S. D. [2 ]
Tolhuisen, M. L. [1 ,9 ]
Wermer, M. J. H. [3 ]
Barros, R. S. [1 ]
van der Schaaf, I. [4 ]
Dippel, D. [5 ]
Roos, Y. B. W. E. M. [6 ]
van Zwam, W. H. [7 ]
Yoo, A. J. [8 ]
Emmer, B. J. [9 ]
Nijeholt, G. J. Lycklama a [10 ]
Zwinderman, A. H. [2 ]
Strijkers, G. J. [1 ]
Majoie, C. B. L. M. [9 ]
Marquering, H. A. [1 ,9 ]
机构
[1] Univ Amsterdam, Amsterdam UMC, Dept Biomed Engn & Phys, Amsterdam, Netherlands
[2] Univ Amsterdam, Amsterdam UMC, Dept Clin Epidemiol & Biostat, Amsterdam, Netherlands
[3] Leiden Univ, Med Ctr, Dept Neurol, Leiden, Netherlands
[4] Univ Med Ctr Utrecht, Dept Radiol & Nucl Med, Utrecht, Netherlands
[5] Erasmus MC, Univ Med Ctr, Dept Neurol, Rotterdam, Netherlands
[6] Univ Amsterdam, Amsterdam UMC, Dept Neurol, Amsterdam, Netherlands
[7] Maastricht Univ, Med Ctr, Dept Radiol & Nucl Med, Maastricht, Netherlands
[8] Texas Stroke Inst, Neurointervent, Dallas, TX USA
[9] Univ Amsterdam, Amsterdam UMC, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[10] Haaglanden Med Ctr, Radiol, The Hague, Netherlands
关键词
Acute ischemic stroke; Radiological images; Deep learning; Prognostics; ResNet; RFNN; Structured receptive fields; Gradient-weighted class activation mapping; COMPUTED-TOMOGRAPHY; CT ANGIOGRAPHY; SCORE;
D O I
10.1016/j.compbiomed.2019.103516
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Treatment selection is becoming increasingly more important in acute ischemic stroke patient care. Clinical variables and radiological image biomarkers (old age, pre-stroke mRS, NIHSS, occlusion location, ASPECTS, among others) have an important role in treatment selection and prognosis. Radiological biomarkers require expert annotation and are subject to inter-observer variability. Recently, Deep Learning has been introduced to reproduce these radiological image biomarkers. Instead of reproducing these biomarkers, in this work, we investigated Deep Learning techniques for building models to directly predict good reperfusion after endovascular treatment (EVT) and good functional outcome using CT angiography images. These models do not require image annotation and are fast to compute. We compare the Deep Learning models to Machine Learning models using traditional radiological image biomarkers. We explored Residual Neural Network (ResNet) architectures, adapted them with Structured Receptive Fields (RFNN) and auto-encoders (AE) for network weight initialization. We further included model visualization techniques to provide insight into the network's decision-making process. We applied the methods on the MR CLEAN Registry dataset with 1301 patients. The Deep Learning models outperformed the models using traditional radiological image biomarkers in three out of four cross-validation folds for functional outcome (average AUC of 0.71) and for all folds for reperfusion (average AUC of 0.65). Model visualization showed that the arteries were relevant features for functional outcome prediction. The best results were obtained for the ResNet models with RFNN. Auto-encoder initialization often improved the results. We concluded that, in our dataset, automated image analysis with Deep Learning methods outperforms radiological image biomarkers for stroke outcome prediction and has the potential to improve treatment selection.
引用
收藏
页数:7
相关论文
共 43 条
[1]  
Alqahtani SA, 2017, CUREUS, V9, P6
[2]  
[Anonymous], BMJ
[3]  
[Anonymous], 2016, The top 10 causes of death
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]   Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy [J].
Barber, PA ;
Demchuk, AM ;
Zhang, JJ ;
Buchan, AM .
LANCET, 2000, 355 (9216) :1670-1674
[6]   Variations in size and in symmetry of foramina of the human skull [J].
Berge, JK ;
Bergman, RA .
CLINICAL ANATOMY, 2001, 14 (06) :406-413
[7]   Collateral Status on Baseline Computed Tomographic Angiography and Intra-Arterial Treatment Effect in Patients With Proximal Anterior Circulation Stroke [J].
Berkhemer, Olvert A. ;
Jansen, Ivo G. H. ;
Beumer, Debbie ;
Fransen, Puck S. S. ;
van den Berg, Lucie A. ;
Yoo, Albert J. ;
Lingsma, Hester F. ;
Sprengers, Marieke E. S. ;
Jenniskens, Sjoerd F. M. ;
Lycklama a Nijeholt, Geert J. ;
van Walderveen, Marianne A. A. ;
van den Berg, Rene ;
Bot, Joseph C. J. ;
Beenen, Ludo F. M. ;
Boers, Anna M. M. ;
Slump, Cornelis H. ;
Roos, Yvo B. W. E. M. ;
van Oostenbrugge, Robert J. ;
Dippel, Diederik W. J. ;
van der Lugt, Aad ;
van Zwam, Wim H. ;
Marquering, Henk A. ;
Majoie, Charles B. L. M. .
STROKE, 2016, 47 (03) :768-776
[8]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[9]  
Clerigues A., 2018, SUNET DEEP LEARNING
[10]  
Cogswell M., VISUAL EXPLANATIONS