Quantum metrology matrix

被引:22
|
作者
Yuan, Haidong [1 ]
Fung, Chi-Hang Fred [2 ]
机构
[1] Chinese Univ Hong Kong, Dept Mech & Automat Engn, Shatin, Hong Kong, Peoples R China
[2] Huawei Technol Dusseldorf GmbH, German Res Ctr, D-80992 Dusseldorf, Germany
关键词
STATISTICAL DISTANCE; LIMIT;
D O I
10.1103/PhysRevA.96.012310
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Various strategies exist in quantum metrology, such as with or without ancillary system, with a fixed or optimized measurement, with or without monitoring the environment, etc. Different set of tools are usually needed for different strategies. In this article, we provide a unified framework for these different settings, in particular we introduce a quantum metrology matrix and show that the precision limits of different settings can all be obtained from the trace or the trace norm of the quantum metrology matrix. Furthermore, the probe state enters into the quantum metrology matrix linearly, which makes the identification of the optimal probe states, one of the main quests in quantum metrology, much more efficient than conventional methods.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Quantum metrology for a general Hamiltonian parameter
    Pang, Shengshi
    Brun, Todd A.
    PHYSICAL REVIEW A, 2014, 90 (02):
  • [32] Optimal adaptive control for quantum metrology with time-dependent Hamiltonians
    Pang, Shengshi
    Jordan, Andrew N.
    NATURE COMMUNICATIONS, 2017, 8
  • [33] Experimental demonstration of nonlinear quantum metrology with optimal quantum state
    Nie, Xinfang
    Huang, Jiahao
    Li, Zhaokai
    Zheng, Wenqiang
    Lee, Chaohong
    Peng, Xinhua
    Du, Jiangfeng
    SCIENCE BULLETIN, 2018, 63 (08) : 469 - 476
  • [34] Random Bosonic States for Robust Quantum Metrology
    Oszmaniec, M.
    Augusiak, R.
    Gogolin, C.
    Kolodynski, J.
    Acin, A.
    Lewenstein, M.
    PHYSICAL REVIEW X, 2016, 6 (04):
  • [35] Using Entanglement Against Noise in Quantum Metrology
    Demkowicz-Dobrzanski, Rafal
    Maccone, Lorenzo
    PHYSICAL REVIEW LETTERS, 2014, 113 (25)
  • [36] Quantum Metrology in Non-Markovian Environments
    Chin, Alex W.
    Huelga, Susana F.
    Plenio, Martin B.
    PHYSICAL REVIEW LETTERS, 2012, 109 (23)
  • [37] Quantum Optical Technologies for Metrology, Sensing, and Imaging
    Dowling, Jonathan P.
    Seshadreesan, Kaushik P.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (12) : 2359 - 2370
  • [38] General Optimality of the Heisenberg Limit for Quantum Metrology
    Zwierz, Marcin
    Perez-Delgado, Carlos A.
    Kok, Pieter
    PHYSICAL REVIEW LETTERS, 2010, 105 (18)
  • [39] Quantum-Enhanced Metrology with Network States
    Yang, Yuxiang
    Yadin, Benjamin
    Xu, Zhen-Peng
    PHYSICAL REVIEW LETTERS, 2024, 132 (21)
  • [40] Efficient tools for quantum metrology with uncorrelated noise
    Kolodynski, Jan
    Demkowicz-Dobrzanski, Rafal
    NEW JOURNAL OF PHYSICS, 2013, 15