Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps

被引:141
作者
Chun, B. [1 ]
Ladd, A. J. C. [1 ]
机构
[1] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevE.75.066705
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Several different interpolation schemes have been proposed for improving the accuracy of lattice Boltzmann simulations in the vicinity of a solid boundary. However, these methods require at least two or three fluid nodes between nearby solid surfaces, a condition that may not be fulfilled in dense suspensions or porous media for example. Here we propose an interpolation of the equilibrium distribution, which leads to a velocity field that is both second-order accurate in space and independent of viscosity. The equilibrium interpolation rule infers population densities on the boundary itself to reduce the span of nodes needed for interpolation; it requires a minimum of one grid spacing between the nodes. By contrast, the linear interpolation rule requires two fluid nodes in the gap and leads to a viscosity-dependent slip velocity, while the multireflection rule is viscosity independent but requires a minimum of three fluid nodes.
引用
收藏
页数:12
相关论文
共 47 条
[1]   Fluctuating lattice Boltzmann [J].
Adhikari, R ;
Stratford, K ;
Cates, ME ;
Wagner, AJ .
EUROPHYSICS LETTERS, 2005, 71 (03) :473-479
[2]   Simulation of a single polymer chain in solution by combining lattice Boltzmann and molecular dynamics [J].
Ahlrichs, P ;
Dünweg, B .
JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (17) :8225-8239
[3]   Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation [J].
Aidun, CK ;
Lu, YN ;
Ding, EJ .
JOURNAL OF FLUID MECHANICS, 1998, 373 :287-311
[4]   Transport in sandstone: A study based on three dimensional microtomography [J].
Auzerais, FM ;
Dunsmuir, J ;
Ferreol, BB ;
Martys, N ;
Olson, J ;
Ramakrishnan, TS ;
Rothman, DH ;
Schwartz, LM .
GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (07) :705-708
[5]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[6]   RECOVERY OF THE NAVIER-STOKES EQUATIONS USING A LATTICE-GAS BOLTZMANN METHOD [J].
CHEN, HD ;
CHEN, SY ;
MATTHAEUS, WH .
PHYSICAL REVIEW A, 1992, 45 (08) :R5339-R5342
[7]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[8]   A KNUDSEN LAYER THEORY FOR LATTICE GASES [J].
CORNUBERT, R ;
DHUMIERES, D ;
LEVERMORE, D .
PHYSICA D, 1991, 47 (1-2) :241-259
[9]   Multiple-relaxation-time lattice Boltzmann models in three dimensions [J].
d'Humières, D ;
Ginzburg, I ;
Krafczyk, M ;
Lallemand, P ;
Luo, LS .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792) :437-451
[10]   Incompressible limits of lattice Boltzmann equations using multiple relaxation times [J].
Dellar, PJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 190 (02) :351-370