Maximum modulus principles for radial solutions of quasilinear and fully nonlinear singular P.D.E's

被引:0
作者
Kalamajska, Agnieszka [1 ]
Lira, Karol [1 ]
机构
[1] Univ Warsaw, Inst Math, PL-02097 Warsaw, Poland
关键词
maximum principles; quasilinear PDEs; radial solutions; Sturm-Lionville problem; p-Laplacian;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:157 / 176
页数:20
相关论文
共 26 条
[1]  
[Anonymous], 2000, CAMBRIDGE TRACTS MAT
[2]  
Arcoya D, 2004, ADV DIFFERENTIAL EQU, V9, P1185
[3]   INTEGRAL CRITERIA FOR A CLASSIFICATION OF SOLUTIONS OF LINEAR-DIFFERENTIAL EQUATIONS [J].
CECCHI, M ;
MARINI, M ;
VILLARI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 99 (02) :381-397
[4]   ON THE MONOTONICITY PROPERTY FOR A CERTAIN CLASS OF 2ND ORDER DIFFERENTIAL-EQUATIONS [J].
CECCHI, M ;
MARINI, M ;
VILLARI, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 82 (01) :15-27
[5]   ANTI-MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC OPERATORS [J].
CLEMENT, P ;
PELETIER, LA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 34 (02) :218-229
[6]   GLOBAL BIFURCATION FROM THE EIGENVALUES OF THE P-LAPLACIAN [J].
DELPINO, MA ;
MANASEVICH, RF .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (02) :226-251
[7]  
Duhoux M, 2002, B BELG MATH SOC-SIM, V9, P1
[8]   Maximum and anti-maximum principles for singular Sturm-Liouville problems [J].
Duhoux, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :525-547
[9]  
Duhoux M, 2001, MATH NACHR, V225, P19
[10]   Nonlinear singular Sturm-Liouville problems [J].
Duhoux, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 38 (07) :897-918