Compensation of self-absorption losses in luminescent solar concentrators by increasing luminophore concentration

被引:53
作者
Krumer, Zachar [1 ]
van Sark, Wilfried G. J. H. M. [2 ]
Schropp, Ruud E. I. [3 ]
Donega, Celso de Mello [1 ]
机构
[1] Univ Utrecht, Debye Inst NanoMat Sci, Condensed Matter & Interfaces, POB 80000, NL-3508 TA Utrecht, Netherlands
[2] Univ Utrecht, Copernicus Inst, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands
[3] Eindhoven Univ Technol, Dept Appl Phys Plasma & Mat Proc, POB 513, NL-5600 MB Eindhoven, Netherlands
关键词
Luminescent solar concentrators; Self-absorption; Lumogen Red; Lumogen Orange; Saturation; Solar cells; POWER CONVERSION EFFICIENCY; ENERGY-CONVERSION; FLUORESCENT COLLECTORS; PERFORMANCE; PHOTOVOLTAICS; PERYLENE;
D O I
10.1016/j.solmat.2017.04.010
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Self-absorption in luminophores is considered a major obstacle on the way towards efficient luminescent solar concentrators (LSCs). It is commonly expected that upon increasing luminophore concentration in an LSC the absorption of the luminophores increases as well and therefore self-absorption losses will have higher impact on the performance of the device. In this work we construct a fully functioning liquid phase LSC where the luminophore concentration can be altered without changing other conditions in the experimental set-up. We step-wise enlarge the concentration of the luminophores Lumogen Red 305 and Lumogen Orange 240, while monitoring the electrical output and self-absorption effects. Contrary to common belief, self-absorption does not increasingly limit the performance of LSCs when the luminophore concentration increases.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 25 条
[1]  
[Anonymous], 2007, THESIS
[2]   Performance analysis of a large-area luminescent solar concentrator module [J].
Aste, N. ;
Tagliabue, L. C. ;
Del Pero, C. ;
Testa, D. ;
Fusco, R. .
RENEWABLE ENERGY, 2015, 76 :330-337
[3]   Quantum-dot concentrator and thermodynamic model for the global redshift [J].
Barnham, K ;
Marques, JL ;
Hassard, J ;
O'Brien, P .
APPLIED PHYSICS LETTERS, 2000, 76 (09) :1197-1199
[4]   Building Integrated Concentrating Photovoltaics: A review [J].
Chemisana, Daniel .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :603-611
[5]   Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design [J].
Corrado, Carley ;
Leow, Shin Woei ;
Osborn, Melissa ;
Chan, Emory ;
Balaban, Benjamin ;
Carter, Sue A. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2013, 111 :74-81
[6]   Thirty Years of Luminescent Solar Concentrator Research: Solar Energy for the Built Environment [J].
Debije, Michael G. ;
Verbunt, Paul P. C. .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :12-35
[7]   Promising fluorescent dye for solar energy conversion based on a perylene perinone [J].
Debije, Michael G. ;
Verbunt, Paul P. C. ;
Nadkarni, Pradeep J. ;
Velate, Suresh ;
Bhaumik, Kankan ;
Nedumbamana, Sankaran ;
Rowan, Brenda C. ;
Richards, Bryce S. ;
Hoeks, Theo L. .
APPLIED OPTICS, 2011, 50 (02) :163-169
[8]   Monocrystalline silicon photovoltaic luminescent solar concentrator with 4.2% power conversion efficiency [J].
Desmet, L. ;
Ras, A. J. M. ;
de Boer, D. K. G. ;
Debije, M. G. .
OPTICS LETTERS, 2012, 37 (15) :3087-3089
[9]   Luminescent solar concentrators with fiber geometry [J].
Edelenbosch, Oreane Y. ;
Fisher, Martyn ;
Patrignani, Luca ;
van Sark, Wilfried G. J. H. M. ;
Chatten, Amanda J. .
OPTICS EXPRESS, 2013, 21 (09) :A503-A514
[10]   Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices [J].
Gallagher, S. J. ;
Norton, B. ;
Eames, P. C. .
SOLAR ENERGY, 2007, 81 (06) :813-821