Tumor Margin Classification of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks

被引:15
作者
Halicek, Martin [1 ,2 ,3 ]
Little, James V. [4 ]
Wang, Xu [5 ]
Patel, Mihir [6 ,7 ]
Griffith, Christopher C. [4 ]
Chen, Amy Y. [6 ,7 ]
Fei, Baowei [1 ,2 ,7 ,8 ,9 ]
机构
[1] Georgia Inst Technol, Atlanta, GA 30332 USA
[2] Emory Univ, Wallace H Coulter Dept Biomed Engn, Atlanta, GA 30322 USA
[3] Augusta Univ, Med Coll Georgia, Augusta, GA USA
[4] Emory Univ, Sch Med, Dept Pathol & Lab Med, Atlanta, GA 30322 USA
[5] Emory Univ, Sch Med, Dept Hematol & Med Oncol, Atlanta, GA USA
[6] Emory Univ, Sch Med, Dept Otolaryngol, Atlanta, GA 30322 USA
[7] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[8] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[9] Emory Univ, Dept Radiol & Imaging Sci, Atlanta, GA 30322 USA
来源
MEDICAL IMAGING 2018: IMAGE-GUIDED PROCEDURES, ROBOTIC INTERVENTIONS, AND MODELING | 2018年 / 10576卷
关键词
Hyperspectral imaging; convolutional neural network; deep learning; cancer margin detection; intraoperative imaging; head and neck surgery; head and neck cancer; SQUAMOUS-CELL CARCINOMA;
D O I
10.1117/12.2293167
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the largest factors affecting disease recurrence after surgical cancer resection is negative surgical margins. Hyperspectral imaging (HSI) is an optical imaging technique with potential to serve as a computer aided diagnostic tool for identifying cancer in gross ex-vivo specimens. We developed a tissue classifier using three distinct convolutional neural network (CNN) architectures on HSI data to investigate the ability to classify the cancer margins from ex-vivo human surgical specimens, collected from 20 patients undergoing surgical cancer resection as a preliminary validation group. A new approach for generating the HSI ground truth using a registered histological cancer margin is applied in order to create a validation dataset. The CNN-based method classifies the tumor-normal margin of squamous cell carcinoma (SCCa) versus normal oral tissue with an area under the curve (AUC) of 0.86 for inter-patient validation, performing with 81% accuracy, 84% sensitivity, and 77% specificity. Thyroid carcinoma cancer-normal margins are classified with an AUC of 0.94 for inter-patient validation, performing with 90% accuracy, 91% sensitivity, and 88% specificity. Our preliminary results on a limited patient dataset demonstrate the predictive ability of HSI-based cancer margin detection, which warrants further investigation with more patient data and additional processing techniques to optimize the proposed deep learning method.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Hyperspectral Imaging for the Detection of Glioblastoma Tumor Cells in H&E Slides Using Convolutional Neural Networks [J].
Ortega, Samuel ;
Halicek, Martin ;
Fabelo, Himar ;
Camacho, Rafael ;
de la Luz Plaza, Maria ;
Godtliebsen, Fred ;
Callico, Gustavo M. ;
Fei, Baowei .
SENSORS, 2020, 20 (07)
[42]   Rotation Equivariant Convolutional Neural Networks for Hyperspectral Image Classification [J].
Paoletti, Mercedes E. ;
Haut, Juan M. ;
Roy, Swalpa Kumar ;
Hendrix, Eligius M. T. .
IEEE ACCESS, 2020, 8 :179575-179591
[43]   Enhancing Binary Convolutional Neural Networks for Hyperspectral Image Classification [J].
Tang, Xuebin ;
Zhang, Ke ;
Zhou, Xiaolei ;
Zeng, Lingbin ;
Huang, Shan .
REMOTE SENSING, 2024, 16 (23)
[44]   Feature extraction and classification of hyperspectral imaging using minimum noise fraction and deep convolutional neural network [J].
Chakravarty, Sujata ;
Mishra, Rutuparnna ;
Ransingh, Anshit ;
Dash, Satyabrata ;
Mohanty, Sachi Nandan ;
Choudhury, Tanupriya ;
Subramanian, Murali .
JOURNAL OF ELECTRONIC IMAGING, 2023, 32 (02)
[45]   Hyperspectral Image Classification Using a Hybrid 3D-2D Convolutional Neural Networks [J].
Ghaderizadeh, Saeed ;
Abbasi-Moghadam, Dariush ;
Sharifi, Alireza ;
Zhao, Na ;
Tariq, Aqil .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 (14) :7570-7588
[46]   Melanoma Cancer Classification using Deep Convolutional Neural Networks [J].
Cadena, Jose M. ;
Perez, Noel ;
Benitez, Diego ;
Grijalva, Felipe ;
Flores, Ricardo ;
Camacho, Oscar ;
Marrero-Ponce, Yovani .
2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
[47]   Classification of Cancer Types Using Graph Convolutional Neural Networks [J].
Ramirez, Ricardo ;
Chiu, Yu-Chiao ;
Hererra, Allen ;
Mostavi, Milad ;
Ramirez, Joshua ;
Chen, Yidong ;
Huang, Yufei ;
Jin, Yu-Fang .
FRONTIERS IN PHYSICS, 2020, 8 (08)
[48]   Classification of Tumor Regions in Histopathological Images Using Convolutional Neural Networks [J].
Gunduz, Koray ;
Albayrak, Abdulkadir ;
Bilgin, Gokhan ;
Karsligil, M. Elif .
2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
[49]   Performance of convolutional neural networks for the classification of brain tumors using magnetic resonance imaging [J].
Reyes, Daniel ;
Sanchez, Javier .
HELIYON, 2024, 10 (03)
[50]   Spectral-Spatial Hyperspectral Image Classification Using Cascaded Convolutional Neural Networks [J].
Dovletov, Gurbandurdy ;
Hegemann, Tobias ;
Pauli, Josef .
IMAGE ANALYSIS, 2019, 11482 :78-89