Vertex algebras in higher dimensions and globally conformal invariant quantum field theory

被引:21
作者
Nikolov, NM [1 ]
机构
[1] Inst Nucl Energy Res, Sofia 1784, Bulgaria
关键词
Neural Network; Statistical Physic; Complex System; Quantum Field Theory; Nonlinear Dynamics;
D O I
10.1007/s00220-004-1133-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an extension of the definition of vertex algebras in arbitrary space - time dimensions together with their basic structure theory. A one - to - one correspondence between these vertex algebras and axiomatic quantum field theory (QFT) with global conformal invariance (GCI) is constructed.
引用
收藏
页码:283 / 322
页数:40
相关论文
共 15 条
[1]  
[Anonymous], P SUMM SCH MOD MATH
[2]  
[Anonymous], LECT NOTES PHYS
[3]  
[Anonymous], ACTA PHYS POL
[4]  
Atiyah M. F., 1969, Introduction To Commutative Algebra, Addison-Wesley series in mathematics
[5]  
Borcherds R. E., 1998, PROGR MATH, V160, P35, DOI DOI 10.1007/978-1-4612-0705-4_2
[6]  
Dubrovin BA., 1982, Modern Geometry Methods and Applications, DOI [10.1007/978-1-4612-1100-6, DOI 10.1007/978-1-4612-1100-6]
[7]  
Haag R., 1996, LOCAL QUANTUM PHYS F
[8]  
Jost R., 1965, GEN THEORY QUANTIZED
[9]  
Kac V.G., 1996, Vertex algebras for beginners, V2nd
[10]   Globally conformal invariant gauge field theory with rational correlation functions [J].
Nikolov, NM ;
Stanev, YS ;
Todorov, IT .
NUCLEAR PHYSICS B, 2003, 670 (03) :373-400