GEOMETRY AND TOPOLOGY OF COMPLETE LORENTZ SPACETIMES OF CONSTANT CURVATURE

被引:0
作者
Danciger, Jeffrey [1 ]
Gueritaud, Francois [2 ,3 ]
Kassel, Fanny [2 ,3 ]
机构
[1] Univ Texas Austin, Dept Math, 1 Univ Stn,C1200, Austin, TX 78712 USA
[2] Univ Lille 1, Ctr Hyperfrequences & Semicond, CNRS, F-59655 Villeneuve Dascq, France
[3] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2016年 / 49卷 / 01期
基金
美国国家科学基金会;
关键词
DISCONTINUOUS GROUPS; AFFINE ACTIONS; DEFORMATION; SPACES; FORMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study proper, isometric actions of non virtually solvable discrete groups Gamma on the 3-dimensional Minkowski space R-2,R-1, viewing them as limits of actions on the 3-dimensional anti de Sitter space AdS(3). To each such action on R-2,R-1 is associated an infinitesimal deformation, inside SO(2, 1), of the fundamental group of a hyperbolic surface S. When S is convex cocompact, we prove that Gamma acts properly on R-2,R-1 if and only if this grou -level deformation is realized by a deformation of S that uniformly contracts or uniformly expands all distances. We give two applications in this case. (1) Tameness: A complete flat spacetime is homeomorphic to the interior of a compact manifold with boundary. (2) Geometric transition: A complete flat spacetime is the rescaled limit of collapsing AdS spacetimes.
引用
收藏
页码:1 / 56
页数:56
相关论文
共 45 条
[1]   Properly discontinuous groups of affine transformations: A survey [J].
Abels, H .
GEOMETRIAE DEDICATA, 2001, 87 (1-3) :309-333
[2]   Algebraic limits of Kleinian groups which rearrange the pages of a book [J].
Anderson, JW ;
Canary, RD .
INVENTIONES MATHEMATICAE, 1996, 126 (02) :205-214
[3]  
[Anonymous], B AM MATH SOC
[4]  
[Anonymous], ELECT RES ANNOUNC AM
[5]  
[Anonymous], ARXIV12045308
[6]  
[Anonymous], 1967, TOPOLOGY
[7]  
[Anonymous], 1941, Duke Math. J.
[8]   Globally hyperbolic flat space-times [J].
Barbot, T .
JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (02) :123-165
[9]   Proper actions on reductive homogeneous spaces [J].
Benoist, Y .
ANNALS OF MATHEMATICS, 1996, 144 (02) :315-347
[10]  
Canary R.D., 2010, Ramanujan Math. Soc. Lect. Notes Ser., V10, P131