Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems

被引:265
作者
Yin, Jian [1 ]
Zhang, Wenli [2 ]
Alhebshi, Nuha A. [3 ]
Salah, Numan [4 ]
Alshareef, Husam N. [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div, Mat Sci & Engn, Thuwal 239556900, Saudi Arabia
[2] Guangdong Univ Technol GDUT, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Phys Dept, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, Ctr Nanotechnol, Jeddah 21589, Saudi Arabia
关键词
electrochemical zinc‐ ion capacitors; electrolytes; porous carbon; pseudocapacitance; zinc anodes; ENERGY-STORAGE DEVICE; DENDRITE-FREE ZINC; HYDROGEN EVOLUTION; NANOPOROUS-CARBON; POROUS CARBON; LONG-LIFE; HYBRID SUPERCAPACITOR; ACTIVATED CARBON; RECENT PROGRESS; AQUEOUS-ELECTROLYTE;
D O I
10.1002/aenm.202100201
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrochemical zinc ion capacitor (ZIC) is a hybrid supercapacitor composed of a porous carbon cathode and a zinc anode. Based on the low-cost features of carbon and zinc metal, ZIC is a potential candidate for safe, high-power, and low-cost energy storage applications. ZICs have gained tremendous attention in recent years. However, the low energy densities and limited cycling stability are still major challenges for developing high-performance ZICs. First, the energy density of ZIC is limited by the low capacitance of porous carbon cathodes. Second, aqueous electrolytes induce parasitic reactions, which results in limited voltage windows and poor cycling performances of ZICs. Third, the poor stabilities and low utilization of zinc anodes remain major challenges to develop practical ZICs. This review summarizes the recent progress in developing ZICs and highlights both the promising and challenging attributes of this emerging energy storage technology. Future research directions are proposed for developing better, lower cost, and more scalable ZICs for energy storage applications.
引用
收藏
页数:30
相关论文
共 251 条
[31]   PHASE-DIAGRAM OF LIXC6 [J].
DAHN, JR .
PHYSICAL REVIEW B, 1991, 44 (17) :9170-9177
[32]  
Davis, 1971, J ELECTROCHEM SOC, V118, p295C
[33]   Influence of disodium ethylenediaminetetraacetate on zinc electrodeposition process and on the morphology, chemical composition and structure of the electrodeposits [J].
de Carvalho, Marcos F. ;
Barbano, Elton P. ;
Carlos, Ivani A. .
ELECTROCHIMICA ACTA, 2013, 109 :798-808
[34]   A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance [J].
Deng, Xiaoyang ;
Li, Jiajun ;
Shan, Zhu ;
Sha, Junwei ;
Ma, Liying ;
Zhao, Naiqin .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (23) :11617-11625
[35]   ELECTROCRYSTALLIZATION OF ZINC DENDRITES IN HIGH-PURITY, AND INHIBITOR DOPED, ALKALINE ZINCATE SOLUTIONS [J].
DIGGLE, JW ;
DAMJANOVIC, A .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1970, 117 (01) :65-+
[36]   Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors [J].
Dong, Liubing ;
Ma, Xinpei ;
Li, Yang ;
Zhao, Ling ;
Liu, Wenbao ;
Cheng, Junye ;
Xu, Chengjun ;
Li, Baohua ;
Yang, Quan-Hong ;
Kang, Feiyu .
ENERGY STORAGE MATERIALS, 2018, 13 :96-102
[37]   Non-concentrated aqueous electrolytes with organic solvent additives for stable zinc batteries†‡ [J].
Dong, Yang ;
Miao, Licheng ;
Ma, Guoqiang ;
Di, Shengli ;
Wang, Yuanyuan ;
Wang, Liubin ;
Xu, Jianzhong ;
Zhang, Ning .
CHEMICAL SCIENCE, 2021, 12 (16) :5843-5852
[38]   Boosting the Electrical Double-Layer Capacitance of Graphene by Self-Doped Defects through Ball-Milling [J].
Dong, Yue ;
Zhang, Su ;
Du, Xian ;
Hong, Song ;
Zhao, Shengna ;
Chen, Yaxin ;
Chen, Xiaohong ;
Song, Huaihe .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)
[39]   Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J].
Du, Wencheng ;
Ang, Edison Huixiang ;
Yang, Yang ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (10) :3330-3360
[40]   Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes [J].
Endo, M ;
Maeda, T ;
Takeda, T ;
Kim, YJ ;
Koshiba, K ;
Hara, H ;
Dresselhaus, MS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A910-A914