Facile Synthesis of Carbon-Coated Silicon/Graphite Spherical Composites for High-Performance Lithium-Ion Batteries

被引:138
作者
Kim, So Yeun [1 ]
Lee, Jaewoo [1 ]
Kim, Bo-Hye [2 ]
Kim, Young-Jun [1 ]
Yang, Kap Seung [3 ,4 ]
Park, Min-Sik [1 ,5 ]
机构
[1] Korea Elect Technol Inst, Adv Batteries Res Ctr, 68 Yatap Dong, Songnam 463816, South Korea
[2] Daegu Univ, Div Sci Educ, 201 Daegudae Ro, Gyongsan 712714, Gyeongbuk Do, South Korea
[3] Chonnam Natl Univ, Grad Sch, Dept Polymer Engn, 77 Yongbong Ro, Gwangju 500757, South Korea
[4] Chonnam Natl Univ, Alan G MacDiarmid Energy Res Inst, 77 Yongbong Ro, Gwangju 500757, South Korea
[5] Kyung Hee Univ, Dept Adv Mat Engn Informat & Elect, 1732 Deogyeong Daero, Yongin 17104, South Korea
关键词
silicon; composite; anode; Li-ion batteries; electrochemistry; NATURAL GRAPHITE ANODE; ELECTROCHEMICAL PERFORMANCE; SILICON NANOPARTICLES; SECONDARY BATTERIES; SI; GRAPHENE; STORAGE; SPECTROSCOPY; ELECTRODE; SURFACE;
D O I
10.1021/acsami.5b11628
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A high-performance Si/carbon/graphite composite in which Si nanoparticles are attached onto the surface of natural graphite by carbonization of coal-tar pitch is proposed for use in lithium-ion batteries. This multicomponent structure is favorable for improving Li+ storage capability because the amorphous carbon layer encapsulating Si nanoparticles offers sufficient electric conductivity and strong elasticity to facilitate relaxation of strain caused by electrochemical reaction of Si during cycles. The Si/carbon/graphite composite exhibits a specific capacity of 712 mAh g(-1) at a constant current density of 130 mA g(-1), and maintains more than 80% of its initial capacity after 100 cycles. Moreover, it shows a high capacity retention of approximately 88% even at a high current density of 5 C (3250 mA g(-1)), On the basis of electrochemical and structural analyses, we suggest that a rational design of the Si/carbon/graphite composite is mainly responsible for delivering a high reversible capacity and stable cycle performance. Furthermore, the proposed synthetic route for the Si/carbon/graphite composite is simple and cost:effective for mass production.
引用
收藏
页码:12109 / 12117
页数:9
相关论文
共 50 条
  • [21] Novel hard carbon/graphite composites synthesized by a facile in situ anchoring method as high-performance anodes for lithium-ion batteries
    Ge, Chuanzhang
    Fan, Zhenghua
    Zhang, Jie
    Qiao, Yongmin
    Wang, Jianming
    Ling, Licheng
    RSC ADVANCES, 2018, 8 (60): : 34682 - 34689
  • [22] Facile synthesis of hybrid pitch-based soft carbon as high-performance silicon/carbon anodes for lithium-ion batteries
    Liu, Zetao
    Du, Juntao
    Jia, Huina
    Wang, Wenchao
    Zhang, Minxin
    Li, Tianjin
    Nie, Yi
    Liu, Tianqing
    Song, Kedong
    IONICS, 2022, 28 (08) : 3709 - 3718
  • [23] Facile synthesis of silicon/carbon nanospheres composite anode materials for lithium-ion batteries
    Zhou, Yu
    Guo, Huajun
    Yang, Yong
    Wang, Zhixing
    Li, Xinhai
    Zhou, Rong
    Peng, Wenjie
    MATERIALS LETTERS, 2016, 168 : 138 - 142
  • [24] Synthesis and electrochemical performance of carbon-coated LiCoBO3 as cathode materials for lithium-ion batteries
    Chen, Wei
    Liu, Jiequn
    Zhang, Xiaoping
    Liu, Shijun
    Zhong, Shengkui
    IONICS, 2018, 24 (06) : 1571 - 1577
  • [25] Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries
    Li, Yaru
    Wang, Ruyi
    Zhang, Jiwei
    Chen, Jianping
    Du, Chenqiang
    Sun, Tianhua
    Liu, Jian
    Gong, Chunhong
    Guo, Jianhui
    Yu, Laigui
    Zhang, Jingwei
    CERAMICS INTERNATIONAL, 2019, 45 (13) : 16195 - 16201
  • [26] Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes
    Huang, Rui
    Fan, Xing
    Shen, Wanci
    Zhu, Jing
    APPLIED PHYSICS LETTERS, 2009, 95 (13)
  • [27] Nanostructured Phosphorus Doped Silicon/Graphite Composite as Anode for High-Performance Lithium-Ion Batteries
    Huang, Shiqiang
    Cheong, Ling-Zhi
    Wang, Deyu
    Shen, Cai
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (28) : 23672 - 23678
  • [28] From spent graphite to amorphous sp2 + sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries
    Ma, Zhen
    Zhuang, Yuchan
    Deng, Yaoming
    Song, Xiaona
    Zuo, Xiaoxi
    Xiao, Xin
    Nan, Junmin
    JOURNAL OF POWER SOURCES, 2018, 376 : 91 - 99
  • [29] Compact structured silicon/carbon composites as high-performance anodes for lithium ion batteries
    Yang, Zhewei
    Yang, Yang
    Guo, Huajun
    Wang, Zhixing
    Li, Xinhai
    Zhou, Yu
    Wang, Jiexi
    IONICS, 2018, 24 (11) : 3405 - 3411
  • [30] Preparation of carbon-coated MnFe2O4 nanospheres as high-performance anode materials for lithium-ion batteries
    Jiang, Fei
    Du, Xiumei
    Zhao, Saihua
    Guo, Jinxin
    Huang, Bujun
    Huang, Xiu
    Su, Qingmei
    Zhang, Jun
    Du, Gaohui
    JOURNAL OF NANOPARTICLE RESEARCH, 2015, 17 (04)