Large-Scale Human Dendritic Cell Differentiation Revealing Notch-Dependent Lineage Bifurcation and Heterogeneity

被引:112
作者
Balan, Sreekumar [1 ,2 ,3 ]
Arnold-Schrauf, Catharina [1 ]
Abbas, Abdenour [1 ]
Couespel, Norbert [1 ]
Savoret, Juliette [1 ]
Imperatore, Francesco [1 ]
Villani, Alexandra-Chloe [4 ,5 ]
Thien-Phong Vu Manh [1 ]
Bhardwaj, Nina [2 ,3 ]
Dalod, Marc [1 ]
机构
[1] Aix Marseille Univ, CIML, INSERM, CNRS, F-13288 Marseille, France
[2] Icahn Sch Med Mt Sinai, Tisch Canc Inst, New York, NY 10029 USA
[3] Parker Inst Canc Immunotherapy, San Francisco, CA 94129 USA
[4] Brd Inst Harvard Univ & MIT, Cambridge, MA 02142 USA
[5] Massachusetts Gen Hosp, Ctr Immunol & Inflammatory Dis, Boston, MA 02129 USA
基金
欧洲研究理事会;
关键词
MELANOMA PATIENTS; BONE-MARROW; STEM-CELLS; IN-VITRO; BLOOD; PROGENITORS; EXPRESSION; RECEPTOR; VACCINES; MOUSE;
D O I
10.1016/j.celrep.2018.07.033
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The ability to generate large numbers of distinct types of human dendritic cells (DCs) in vitro is critical for accelerating our understanding of DC biology and harnessing them clinically. We developed a DC differentiation method from human CD34(+) precursors leading to high yields of plasmacytoid DCs (pDCs) and both types of conventional DCs (cDC1s and cDC2s). The identity of the cells generated in vitro and their strong homology to their blood counterparts were demonstrated by phenotypic, functional, and single-cell RNA-sequencing analyses. This culture system revealed a critical role of Notch signaling and GM-CSF for promoting cDC1 generation. Moreover, we discovered a pre-terminal differentiation state for each DC type, characterized by high expression of cell-cycle genes and lack of XCR1 in the case of cDC1. Our culture system will greatly facilitate the simultaneous and comprehensive study of primary, otherwise rare human DC types, including their mutual interactions.
引用
收藏
页码:1902 / +
页数:20
相关论文
共 50 条
[1]   Migration of dendritic cell based cancer vaccines:: in vivo veritas? [J].
Adema, GJ ;
de Vries, IJM ;
Punt, CJA ;
Figdor, CG .
CURRENT OPINION IN IMMUNOLOGY, 2005, 17 (02) :170-174
[2]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[3]   Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines [J].
Bakdash, Ghaith ;
Buschow, Sonja I. ;
Gorris, Mark A. J. ;
Halilovic, Altuna ;
Hato, Stanleyson V. ;
Skold, Annette E. ;
Schreibelt, Gerty ;
Sittig, Simone P. ;
Torensma, Ruurd ;
Duiveman-de Boer, Tjitske ;
Schroeder, Christoph ;
Smits, Evelien L. ;
Figdor, Carl G. ;
de Vries, I. Jolanda M. .
CANCER RESEARCH, 2016, 76 (15) :4332-4346
[4]   Human XCR1+ Dendritic Cells Derived In Vitro from CD34+ Progenitors Closely Resemble Blood Dendritic Cells, Including Their Adjuvant Responsiveness, Contrary to Monocyte-Derived Dendritic Cells [J].
Balan, Sreekumar ;
Ollion, Vincent ;
Colletti, Nicholas ;
Chelbi, Rabie ;
Montanana-Sanchis, Frederic ;
Liu, Hong ;
Thien-Phong Vu Manh ;
Sanchez, Cindy ;
Savoret, Juliette ;
Perrot, Ivan ;
Doffin, Anne-Claire ;
Fossum, Even ;
Bechlian, Didier ;
Chabannon, Christian ;
Bogen, Bjarne ;
Asselin-Paturel, Carine ;
Shaw, Michael ;
Soos, Timothy ;
Caux, Christophe ;
Valladeau-Guilemond, Jenny ;
Dalod, Marc .
JOURNAL OF IMMUNOLOGY, 2014, 193 (04) :1622-1635
[5]   Naturally circulating dendritic cells to vaccinate cancer patients [J].
Bol, Kalijn F. ;
Tel, Jurjen ;
de Vries, I. Jolanda M. ;
Figdor, Carl G. .
ONCOIMMUNOLOGY, 2013, 2 (03)
[6]   Human dendritic cells (DCs) are derived from distinct circulating precursors that are precommitted to become CD1c+ or CD141+ DCs [J].
Breton, Gaelle ;
Zheng, Shiwei ;
Valieris, Renan ;
da Silva, Israel Tojal ;
Satija, Rahul ;
Nussenzweig, Michel C. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2016, 213 (13) :2861-2870
[7]   Circulating precursors of human CD1c+ and CD141+ dendritic cells [J].
Breton, Gaelle ;
Lee, Jaeyop ;
Zhou, Yu Jerry ;
Schreiber, Joseph J. ;
Keler, Tibor ;
Puhr, Sarah ;
Anandasabapathy, Niroshana ;
Schlesinger, Sarah ;
Caskey, Marina ;
Liu, Kang ;
Nussenzweig, Michel C. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2015, 212 (03) :401-413
[8]   BDCA2/FcεRlγ complex signals through a novel BCR-like pathway in human plasmacytoid dendritic cells [J].
Cao, Wei ;
Zhang, Li ;
Rosen, David B. ;
Bover, Laura ;
Watanabe, Gokuran ;
Bao, Musheng ;
Lanier, Lewis L. ;
Liu, Yong-Jun .
PLOS BIOLOGY, 2007, 5 (10) :2190-2200
[9]   Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1+ DCs in mouse and human and distinguishes them from Langerhans cells [J].
Carpentier, Sabrina ;
Thien-Phong Vu Manh ;
Chelbi, Rabie ;
Henri, Sandrine ;
Malissen, Bernard ;
Haniffa, Muzlifah ;
Ginhoux, Florent ;
Dalod, Marc .
JOURNAL OF IMMUNOLOGICAL METHODS, 2016, 432 :35-49
[10]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21