ON CONSTRUCTION OF THE SMALLEST ONE-SIDED CONFIDENCE INTERVAL FOR THE DIFFERENCE OF TWO PROPORTIONS

被引:43
作者
Wang, Weizhen [1 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
基金
美国国家科学基金会;
关键词
Binomial distribution; coverage probability; minimum effective dose; multiple tests; Poisson distribution; set inclusion; MULTIPLE TEST PROCEDURES;
D O I
10.1214/09-AOS744
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For my class of one-sided 1 - alpha confidence intervals with a certain monotonicity ordering on the random confidence limit, the smallest interval, in the sense of the set inclusion for the difference of two proportions of two independent binomial random variables, is constructed based on a direct analysis of coverage probability function. A special ordering on the confidence limit is developed and the corresponding smallest confidence interval is derived. This interval is then applied to identify the minimum effective dose (MED) for binary data in dose-response studies, and a multiple test procedure that controls the familywise error rate at level alpha is obtained. A generalization of constructing the smallest one-sided confidence interval to other discrete sample spaces is discussed in the presence of nuisance parameters.
引用
收藏
页码:1227 / 1243
页数:17
相关论文
共 12 条
[1]   CHOOSING THE OPTIMAL UNCONDITIONED TEST FOR COMPARING 2 INDEPENDENT PROPORTIONS [J].
ANDRES, AM ;
MATO, AS .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1994, 17 (05) :555-574
[2]  
BARNARD GA, 1947, BIOMETRIKA, V34, P123, DOI 10.1093/biomet/34.1-2.123
[3]   ON CONSTRUCTION OF CONFIDENCE LIMITS [J].
BOLSHEV, LN .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1965, 10 (01) :173-&
[4]   INTERVAL ESTIMATES IN PRESENCE OF NUISANCE PARAMETERS [J].
BOLSHEV, LN ;
LOGINOV, EA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1966, 11 (01) :82-&
[5]   Combining multiple comparisons and modeling techniques in dose-response studies [J].
Bretz, F ;
Pinheiro, JC ;
Branson, M .
BIOMETRICS, 2005, 61 (03) :738-748
[6]  
Casella G., 2021, Statistical inference
[7]  
Hsu JC, 1999, J AM STAT ASSOC, V94, P468
[8]  
MARCUS R, 1976, BIOMETRIKA, V63, P655, DOI 10.2307/2335748
[9]   Stepwise multiple test procedures with biometric applications [J].
Tamhane, AC ;
Dunnett, CW .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 82 (1-2) :55-68
[10]   Multiple test procedures for dose finding [J].
Tamhane, AC ;
Hochberg, Y ;
Dunnett, CW .
BIOMETRICS, 1996, 52 (01) :21-37