Towards high-performance phosphate-based polyanion-type materials for sodium-ion batteries

被引:91
作者
Yuan, Yong [1 ]
Wei, Qingyuan [1 ]
Yang, Shaokang [1 ]
Zhang, Xiaoyu [1 ]
Jia, Min [1 ]
Yuan, Jiaren [2 ]
Yan, Xiaohong [1 ,2 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Coll Sci, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Polyanion-type materials; Phosphates-based materials; High performance battery materials; NA2COP2O7 PYROPHOSPHATE CATHODE; CARBON-COATED NA3V2(PO4)(3); POSITIVE ELECTRODE MATERIAL; LONG CYCLE-LIFE; HIGH-VOLTAGE; ELECTROCHEMICAL PERFORMANCE; CRYSTAL-STRUCTURES; PHASE-TRANSITIONS; NASICON STRUCTURE; OLIVINE NAFEPO4;
D O I
10.1016/j.ensm.2022.06.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Efficient energy storage techniques are prerequisites for the utilization of sustainable energy. During the recent decades, the emergence of lithium-ion batteries (LIBs) has greatly promoted the development of portable electronic equipment and electrical vehicles, yet, there is still a large difference between supply and demand, especially for large-scale energy storage. Sodium-ion batteries (SIBs) are regarded as promising alternatives for LIBs based on the abundant sodium resources and the reaction pattern that is comparable with that of LIBs. Among these cathode materials, phosphate-based polyanion-type materials have attracted much attention due to their inherent advantages such as uniquely stable structures and high operating potentials. Moreover, the small structural variations that occur during the cycling process within phosphate-based materials facilitate excellent rate performance and cycling stability. However, there still exist challenging issues within phosphate-based polyanion-type materials for further application due to their intrinsically low electronic conductivity and limited energy density. Many efforts will be needed before they can be widely used as commercial SIB cathode materials. In this review, the recent progress of phosphate-based polyanion-type electrode materials is briefly summarized based on compositional structure, reaction mechanism, fundamental issues, and remaining difficulties for phosphates, pyrophosphates, NASICON-type, and fluoride phosphate types of materials. Furthermore, structural-induced high performance and the flexible manipulation of material structure toward rational design of phosphate-based polyanion-type electrodes have also been discussed. We hope this review can provide some insights into the working mechanisms of and potential improvements of phosphate-based polyanion-type electrode materials and inspires further design enhancements of SIB materials.
引用
收藏
页码:760 / 782
页数:23
相关论文
共 194 条
[1]   Polythiophene-Wrapped Olivine NaFePO4 as a Cathode for Na-Ion Batteries [J].
Ali, Ghulam ;
Lee, Ji-Hoon ;
Susanto, Dieky ;
Choi, Seong-Won ;
Cho, Byung Won ;
Nam, Kyung-Wan ;
Chung, Kyung Yoon .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (24) :15422-15429
[2]   Polymorphism and Temperature-Induced Phase Transitions of Na2CoP2O7 [J].
Avdeev, Maxim ;
Wang, Chin-Wei ;
Barpanda, Prabeer ;
Fujii, Kotaro ;
Yashima, Masatomo .
INORGANIC CHEMISTRY, 2019, 58 (24) :16823-16830
[3]   Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries [J].
Avdeev, Maxim ;
Mohamed, Zakiah ;
Ling, Chris D. ;
Lu, Jiechen ;
Tamaru, Mao ;
Yamada, Atsuo ;
Barpanda, Prabeer .
INORGANIC CHEMISTRY, 2013, 52 (15) :8685-8693
[4]   Polyanionic Insertion Materials for Sodium-Ion Batteries [J].
Barpanda, Prabeer ;
Lander, Laura ;
Nishimura, Shin-ichi ;
Yamada, Atsuo .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[5]   Structural, magnetic and electrochemical investigation of novel binary Na2-x(Fe1-yMny)P2O7 (0 ≤ y ≤ 1) pyrophosphate compounds for rechargeable sodium-ion batteries [J].
Barpanda, Prabeer ;
Liu, Guandong ;
Mohamed, Zakiah ;
Ling, Chris D. ;
Yamada, Atsuo .
SOLID STATE IONICS, 2014, 268 :305-311
[6]   A 3.8-V earth-abundant sodium battery electrode [J].
Barpanda, Prabeer ;
Oyama, Gosuke ;
Nishimura, Shin-ichi ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
NATURE COMMUNICATIONS, 2014, 5
[7]   Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries [J].
Barpanda, Prabeer ;
Liu, Guandong ;
Ling, Chris D. ;
Tamaru, Mao ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Yuki ;
Yamada, Atsuo .
CHEMISTRY OF MATERIALS, 2013, 25 (17) :3480-3487
[8]   A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (13) :4194-4197
[9]   A layer-structured Na2CoP2O7 pyrophosphate cathode for sodium-ion batteries [J].
Barpanda, Prabeer ;
Lu, Jiechen ;
Ye, Tian ;
Kajiyama, Masataka ;
Chung, Sai-Cheong ;
Yabuuchi, Naoaki ;
Komaba, Shinichi ;
Yamada, Atsuo .
RSC ADVANCES, 2013, 3 (12) :3857-3860
[10]   Magnetic Structure and Properties of the Na2CoP2O7 Pyrophosphate Cathode for Sodium-Ion Batteries: A Supersuperexchange-Driven Non-Collinear Antiferromagnet [J].
Barpanda, Prabeer ;
Avdeev, Maxim ;
Ling, Chris D. ;
Lu, Jiechen ;
Yamada, Atsuo .
INORGANIC CHEMISTRY, 2013, 52 (01) :395-401