Approximate Near Neighbors for General Symmetric Norms

被引:15
作者
Andoni, Alexandr [1 ]
Nguyen, Huy L. [2 ]
Nikolov, Aleksandar [3 ]
Razenshteyn, Ilya [4 ]
Waingarten, Erik [1 ]
机构
[1] Columbia Univ, New York, NY 10027 USA
[2] Northeastern Univ, Boston, MA 02115 USA
[3] Univ Toronto, Toronto, ON, Canada
[4] MIT CSAIL, Cambridge, MA 02139 USA
来源
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING | 2017年
基金
美国国家科学基金会;
关键词
approximate near-neighbor; symmetric norms; NEAREST-NEIGHBOR;
D O I
10.1145/3055399.3055418
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show that every symmetric normed space admits an efficient nearest neighbor search data structure with doubly-logarithmic approximation. Specifically, for every n, d = n(o(1)), and every d-dimensional symmetric norm parallel to . parallel to, there exists a data structure for poly(log logn)-approximate nearest neighbor search over parallel to . parallel to for n-point datasets achieving n(o(1)) query time and n(1+o(1)) space. The main technical ingredient of the algorithm is a low-distortion embedding of a symmetric norm into a low-dimensional iterated product of top-k norms. We also show that our techniques cannot be extended to general norms.
引用
收藏
页码:902 / 913
页数:12
相关论文
共 42 条
[21]  
Bennett C., 1988, PURE APPL MATH, V129
[22]  
Beygelzimer A., 2006, ICML, DOI DOI 10.1145/1143844.1143857
[23]  
Blasiok Jaroslaw, 2015, ARXIV151101111
[24]  
Braverman V, 2010, ACM S THEORY COMPUT, P281
[25]   Nearest neighbor queries in metric spaces [J].
Clarkson, KL .
DISCRETE & COMPUTATIONAL GEOMETRY, 1999, 22 (01) :63-93
[26]   THE DISTRIBUTION OF VECTOR-VALUED RADEMACHER SERIES [J].
DILWORTH, SJ ;
MONTGOMERYSMITH, SJ .
ANNALS OF PROBABILITY, 1993, 21 (04) :2046-2052
[27]  
Indyk P., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P604, DOI 10.1145/276698.276876
[28]   On approximate nearest neighbors under I∞ norm [J].
Indyk, P .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2001, 63 (04) :627-638
[29]  
John F., 1948, STUDIES ESSAYS PRESE, P187
[30]  
Kapralov M, 2012, LECT NOTES COMPUT SC, V7391, P545, DOI 10.1007/978-3-642-31594-7_46