First-principles study of water adsorption and dissociation on the UO2 (111), (110) and (100) surfaces

被引:36
|
作者
Bo, Tao [1 ,2 ,3 ]
Lan, Jian-Hui [2 ,3 ]
Zhao, Yao-Lin [1 ]
Zhang, Yu-Juan [2 ,3 ]
He, Chao-Hui [1 ]
Chai, Zhi-Fang [2 ,3 ,4 ]
Shi, Wei-Qun [2 ,3 ]
机构
[1] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, Xian 710049, Peoples R China
[2] Chinese Acad Sci, Inst High Energy Phys, Key Lab Nucl Radiat & Nucl Energy Technol, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Key Lab Biomed Effects Nanomat & Nanosafety, Beijing 100049, Peoples R China
[4] Soochow Univ, Sch Radiol & Interdisciplinary Sci, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
DENSITY-FUNCTIONAL-THEORY; TOTAL-ENERGY CALCULATIONS; REDUCED URANIUM-DIOXIDE; AUGMENTED-WAVE METHOD; ELASTIC BAND METHOD; SPENT NUCLEAR-FUEL; ELECTRONIC-STRUCTURE; STRUCTURAL STABILITY; MOLECULAR-DYNAMICS; OXIDE SURFACES;
D O I
10.1016/j.jnucmat.2014.09.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The adsorption and dissociation behaviors of water molecule on the UO2 (1 1 1), (1 1 0) and (1 0 0) surfaces were investigated using first-principles methods within the DFT+U framework. For a single water molecule at 1/4 ML coverage, the molecular adsorption exhibits comparable adsorption energies with the dissociative adsorption on the (1 1 1) surface, while it is far less stable than the dissociative adsorption on the (1 1 0) and (1 0 0) surfaces. We find that the adsorbed molecular and dissociative water tend to cluster on low-index UO2 surfaces by forming hydrogen-bond networks. The adsorption stability of water depends on the synergistic effect of hydrogen bonding interaction and steric effect between adsorbates. The mixed adsorption configuration of molecular and dissociative water in 1:1 mol ratio is found to be thermally more stable on the UO2 (1 1 1) and (1 1 0) surfaces. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条
  • [31] First-principles study of noble gas impurities and defects in UO2
    Thompson, Alexander E.
    Wolverton, C.
    PHYSICAL REVIEW B, 2011, 84 (13)
  • [32] First-principles Study of Adsorption and Dissociation of Methanol on the Pt(100) Surface
    Wang, Zhuo
    Kan, Er-jun
    Yang, Jin-long
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2012, 25 (02) : 199 - 203
  • [33] First-principles study of water adsorption on α-SiO2 [110] surface
    Mankad, Venu
    Jha, Prafulla K.
    AIP ADVANCES, 2016, 6 (08)
  • [34] The adsorption of O on (001) and (111) CdTe surfaces: A first-principles study
    Wang, Jianli
    Tang, Gang
    Wu, X. S.
    Gu, Mingqiang
    THIN SOLID FILMS, 2012, 520 (11) : 3960 - 3964
  • [35] First Principles Study of Atomic Adsorption on (111) and (100) Surfaces of Iridium
    Tadele, Kumneger
    Zhang, Qin-fang
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2022, 35 (06) : 916 - 926
  • [36] First-principles study on the adsorption and dissociation of H2 molecules on Be(0001) surfaces
    Sun, Qingqiang
    Yang, Tianle
    Yang, Li
    Fan, Kaimin
    Peng, Shuming
    Long, Xinggui
    Zhou, Xiaosong
    Zu, Xiaotao
    Du, Jincheng
    COMPUTATIONAL MATERIALS SCIENCE, 2016, 117 : 251 - 258
  • [37] Benzotriazole adsorption on Cu2O(111) surfaces:: A first-principles study
    Jiang, Y
    Adams, JB
    Sun, DH
    JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (34): : 12851 - 12857
  • [38] First-principles study of adsorption, dissociation, and diffusion of hydrogen on α-U (110) surface
    Xu, Zihan
    Qin, Chenglong
    Yu, Yushu
    Jiang, Gang
    Zhao, Liang
    AIP ADVANCES, 2024, 14 (05)
  • [39] H2S adsorption and dissociation on Rh(110) surface: a first-principles study
    Usman, Tariq
    Tan, Ming-qiu
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2018, 24 (06): : 563 - 574
  • [40] H2S adsorption and dissociation on Rh(110) surface: a first-principles study
    Tariq Usman
    Ming-qiu Tan
    Adsorption, 2018, 24 : 563 - 574