Generalized derivations preserving Engel condition in prime and semiprime rings

被引:3
作者
Prestigiacomo, Rita [1 ]
机构
[1] Univ Messina, MIFT, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
关键词
Generalized derivation; semiprime ring; STRONG COMMUTATIVITY; MAPS;
D O I
10.1142/S0219498821500419
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Script capital R be a prime ring with char(Script capital R)not equal 2, Script capital L a non-central Lie ideal of Script capital R, Q its Martindale quotient ring and C its extended centroid. Let F : Script capital R -> Script capital R and G : Script capital R -> Script capital R be nonzero generalized derivations on Script capital R such that [F(x),F(y)]k = G([x,y]k),for all x,y is an element of Script capital L. Then there exists lambda is an element of C such that F(x) = lambda x and G(x) = lambda k+1x, for any x is an element of Script capital R, unless Script capital R subset of M2((C) over bar), where (C) over bar over bar is the algebraic closure of c.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Generalized Derivations with Nilpotent Values on Semiprime Rings
    Feng WEI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2004, 20 (03) : 453 - 462
  • [42] MULTIPLICATIVE GENERALIZED DERIVATIONS ON IDEALS IN SEMIPRIME RINGS
    Golbas, Oznur
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1285 - 1296
  • [43] Generalized derivations on Lie ideals in semiprime rings
    Aboubakr A.
    González S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 841 - 850
  • [44] Generalized skew derivations on semiprime rings
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05) : 927 - 939
  • [45] Generalized reverse derivations on semiprime rings
    Aboubakr, A.
    Gonzalez, S.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) : 199 - 205
  • [46] A RESULT ON ANNIHILATOR CONDITION AND GENERALIZED DERIVATIONS OF PRIME RINGS
    Khan, S.
    Shujat, F.
    Alhendi, G.
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2019, 43 (02): : 101 - 110
  • [47] An Engel condition with an additive mapping in semiprime rings
    MAJA FOŠNER
    NADEEM UR REHMAN
    JOSO VUKMAN
    Proceedings - Mathematical Sciences, 2014, 124 : 497 - 500
  • [48] An Engel condition with an additive mapping in semiprime rings
    Fosner, Maja
    Rehman, Nadeem Ur
    Vukman, Joso
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (04): : 497 - 500
  • [49] Prime and semiprime rings with symmetric skew 3-derivations
    Fosner, Ajda
    AEQUATIONES MATHEMATICAE, 2014, 87 (1-2) : 191 - 200
  • [50] PRIME AND SEMIPRIME RINGS WITH SYMMETRIC SKEW n-DERIVATIONS
    Fosner, Ajda
    COLLOQUIUM MATHEMATICUM, 2014, 134 (02) : 245 - 253