Anomalous diffusion and the first passage time problem

被引:77
作者
Rangarajan, G [1 ]
Ding, MZ
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Ctr Theoret Studies, Bangalore 560012, Karnataka, India
[3] Florida Atlantic Univ, Ctr Complex Syst & Brain Sci, Boca Raton, FL 33431 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 01期
关键词
D O I
10.1103/PhysRevE.62.120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the distribution of the first passage time (FPT) in Levy type anomalous diffusion, Using the recently formulated fractional Fokker-Planck equation we obtain three results. (1) We derive an explicit expression for the FPT distribution in terms of Fox or H functions when the diffusion has zero drift. (2) For the nonzero drift case we obtain an analytical expression for the Laplace transform of the FPT distribution. (3) We express the FPT distribution in terms of a power series for the case of two absorbing barriers. The known results for ordinary diffusion (Brownian motion) are obtained as special cases of our more general results.
引用
收藏
页码:120 / 133
页数:14
相关论文
共 43 条
[1]   Subdiffusion and anomalous local viscoelasticity in actin networks [J].
Amblard, F ;
Maggs, AC ;
Yurke, B ;
Pargellis, AN ;
Leibler, S .
PHYSICAL REVIEW LETTERS, 1996, 77 (21) :4470-4473
[2]  
[Anonymous], FRACTALS BIOL MED
[3]  
[Anonymous], 1993, STAT DISTRIBUTIONS
[4]  
[Anonymous], PHYS REP
[5]   ANOMALOUS DIFFUSION IN ONE DIMENSION [J].
BALAKRISHNAN, V .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1985, 132 (2-3) :569-580
[6]  
BLUMEN A, 1986, OPTICAL SPECTROSCOPY
[7]  
Braaksma B.L.J., 1962, Compos. Math, V15, P239
[8]  
Cox DR., 1965, The Theory of Stochastic Proceesses, DOI DOI 10.1016/J.PHYSA.2011
[9]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[10]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN