Dissecting the role of the Golgi complex and lipid rafts in biosynthetic transport of cholesterol to the cell surface

被引:209
作者
Heino, S
Lusa, S
Somerharju, P
Ehnholm, C
Olkkonen, VM
Ikonen, E
机构
[1] Natl Publ Hlth Inst, Dept Biochem, Helsinki 00300, Finland
[2] Univ Helsinki, Dept Med Chem, Inst Biomed, Helsinki 00014, Finland
基金
英国惠康基金;
关键词
D O I
10.1073/pnas.140218797
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we compared the transport of newly synthesized cholesterol with that of influenza virus hemagglutinin (HA) from the endoplasmic reticulum to the plasma membrane. The arrival of cholesterol on the cell surface was monitored by cyclodextrin removal, and HA transport was monitored by surface trypsinization and endoglycosidase H digestion. We found that disassembly of the Golgi complex by brefeldin A treatment resulted in partial inhibition of cholesterol transport while completely blocking HA transport. Further, microtubule depolymerization by nocodazole inhibited cholesterol and HA transport to a similar extent. When the partitioning of cholesterol into lipid rafts was analyzed, we found that newly synthesized cholesterol began to associate with low-density detergent-resistant membranes rapidly after synthesis, before it was detectable on the cell surface, and its raft association increased further upon chasing. When cholesterol transport was blocked by using 15 degrees C incubation, the association of newly synthesized cholesterol with low-density detergent-insoluble membranes was decreased and cholesterol accumulated in a fraction with intermediate density. Our results provide evidence for the partial contribution of the Golgi complex to the transport of newly synthesized cholesterol to the cell surface and suggest that detergent-resistant membranes are involved in the process.
引用
收藏
页码:8375 / 8380
页数:6
相关论文
共 47 条
[1]  
Absolom D R, 1986, Methods Enzymol, V132, P95
[2]   Export of cellubrevin from the endoplasmic reticulum is controlled by BAP31 [J].
Annaert, WG ;
Becker, B ;
Kistner, U ;
Reth, M ;
Jahn, R .
JOURNAL OF CELL BIOLOGY, 1997, 139 (06) :1397-1410
[3]   Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast [J].
Bagnat, M ;
Keränen, S ;
Shevchenko, A ;
Shevchenko, A ;
Simons, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (07) :3254-3259
[4]  
BERGMEYER HU, 1985, METHOD ENZYMAT AN, P1
[5]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[6]   CHOLESTEROL AND THE GOLGI-APPARATUS [J].
BRETSCHER, MS ;
MUNRO, S .
SCIENCE, 1993, 261 (5126) :1280-1281
[7]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[8]   SORTING OF GPI-ANCHORED PROTEINS TO GLYCOLIPID-ENRICHED MEMBRANE SUBDOMAINS DURING TRANSPORT TO THE APICAL CELL-SURFACE [J].
BROWN, DA ;
ROSE, JK .
CELL, 1992, 68 (03) :533-544
[9]   Structure and origin of ordered lipid domains in biological membranes [J].
Brown, DA ;
London, E .
JOURNAL OF MEMBRANE BIOLOGY, 1998, 164 (02) :103-114
[10]   A RECEPTOR-MEDIATED PATHWAY FOR CHOLESTEROL HOMEOSTASIS [J].
BROWN, MS ;
GOLDSTEIN, JL .
SCIENCE, 1986, 232 (4746) :34-47