Cryogenic electron microscopy for quantum science

被引:16
作者
Minor, Andrew M. [1 ,2 ]
Denes, Peter [3 ]
Muller, David A. [4 ]
机构
[1] Univ Calif Berkeley, Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy Mol Foundry, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[4] Cornell Univ, Sch Appl & Engn Phys, Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
HELIUM STAGE; SUPERCONDUCTOR; INHOMOGENEITY; VISUALIZATION; DOMAINS;
D O I
10.1557/mrs.2019.288
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electron microscopy is uniquely suited for atomic-resolution imaging of heterogeneous and complex materials, where composition, physical, and electronic structure need to be analyzed simultaneously. Historically, the technique has demonstrated optimal performance at room temperature, since practical aspects such as vibration, drift, and contamination limit exploration at extreme temperature regimes. Conversely, quantum materials that exhibit exotic physical properties directly tied to the quantum mechanical nature of electrons are best studied (and often only exist) at extremely low temperatures. As a result, emergent phenomena, such as superconductivity, are typically studied using scanning probe-based techniques that can provide exquisite structural and electronic characterization, but are necessarily limited to surfaces. In this article, we focus not on the various methods that have been used to examine quantum materials at extremely low temperatures, but on what could be accomplished in the field of quantum materials if the power of electron microscopy to provide structural analysis at the atomic scale was extended to extremely low temperatures.
引用
收藏
页码:961 / 966
页数:6
相关论文
共 44 条
[1]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[2]  
Ani Nersisyan S.P., 2019, ARXIV190108042
[3]  
[Anonymous], 2011, ARCH CARDIOL MEX S1, V81, pS64
[4]  
[Anonymous], 2018, DIABETES CARE S1, V4, pS4, DOI 10.2337/dc18-Srev01
[5]   A 10 mK scanning tunneling microscope operating in ultra high vacuum and high magnetic fields [J].
Assig, Maximilian ;
Etzkorn, Markus ;
Enders, Axel ;
Stiepany, Wolfgang ;
Ast, Christian R. ;
Kern, Klaus .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2013, 84 (03)
[6]  
Baldi A, 2014, NAT MATER, V13, P1143, DOI [10.1038/NMAT4086, 10.1038/nmat4086]
[7]   Quantum materials: Where many paths meet [J].
Ball, Philip .
MRS BULLETIN, 2017, 42 (10) :698-705
[8]   Precipitation of hydrides in high purity niobium after different treatments [J].
Barkov, F. ;
Romanenko, A. ;
Trenikhina, Y. ;
Grassellino, A. .
JOURNAL OF APPLIED PHYSICS, 2013, 114 (16)
[9]   Ultra-fast and ultra-intense x-ray sciences: first results from the Linac Coherent Light Source free-electron laser [J].
Bostedt, C. ;
Bozek, J. D. ;
Bucksbaum, P. H. ;
Coffee, R. N. ;
Hastings, J. B. ;
Huang, Z. ;
Lee, R. W. ;
Schorb, S. ;
Corlett, J. N. ;
Denes, P. ;
Emma, P. ;
Falcone, R. W. ;
Schoenlein, R. W. ;
Doumy, G. ;
Kanter, E. P. ;
Kraessig, B. ;
Southworth, S. ;
Young, L. ;
Fang, L. ;
Hoener, M. ;
Berrah, N. ;
Roedig, C. ;
DiMauro, L. F. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (16)
[10]   Bright UV Single Photon Emission at Point Defects in h-BN [J].
Bourrellier, Romain ;
Meuret, Sophie ;
Tararan, Anna ;
Stephan, Odile ;
Kociak, Mathieu ;
Tizei, Luiz H. G. ;
Zobelli, Alberto .
NANO LETTERS, 2016, 16 (07) :4317-4321