A posteriori error estimate for discontinuous Galerkin finite element method on polytopal mesh

被引:4
作者
Cui, Jintao [1 ]
Cao, Fuzheng [2 ]
Sun, Zhengjia [3 ]
Zhu, Peng [4 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
[2] Shandong Univ, Sch Math, Jinan, Shandong, Peoples R China
[3] Shenzhen Univ, Coll Econ, Shenzhen 518060, Guangdong, Peoples R China
[4] Jiaxing Univ, Coll Math Phys & Informat Engn, Jiaxing, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
a posteriori error estimate; discontinuous Galerkin methods; polytopal mesh; second-order elliptic problems; ELLIPTIC PROBLEMS; DIFFUSION-PROBLEMS; CONVERGENCE; APPROXIMATIONS; SUPERCONVERGENCE; CONSTRUCTION;
D O I
10.1002/num.22443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we derive a posteriori error estimates for discontinuous Galerkin finite element method on polytopal mesh. We construct a reliable and efficient a posteriori error estimator on general polygonal or polyhedral meshes. An adaptive algorithm based on the error estimator and DG method is proposed to solve a variety of test problems. Numerical experiments are performed to illustrate the effectiveness of the algorithm.
引用
收藏
页码:601 / 616
页数:16
相关论文
共 53 条
[1]   A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems [J].
Adjerid, S ;
Massey, TC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (51-52) :5877-5897
[2]   The Discontinuous Galerkin Method for Two-dimensional Hyperbolic Problems Part II: A Posteriori Error Estimation [J].
Adjerid, Slimane ;
Baccouch, Mahboub .
JOURNAL OF SCIENTIFIC COMPUTING, 2009, 38 (01) :15-49
[3]  
Ainsworth M, 2005, CONTEMP MATH, V383, P1
[4]   A posteriori error estimation for discontinuous Galerkin finite element approximation [J].
Ainsworth, Mark .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2007, 45 (04) :1777-1798
[5]   Fully Computable a Posteriori Error Bounds for Hybridizable Discontinuous Galerkin Finite Element Approximations [J].
Ainsworth, Mark ;
Fu, Guosheng .
JOURNAL OF SCIENTIFIC COMPUTING, 2018, 77 (01) :443-466
[6]   ON THE ADAPTIVE SELECTION OF THE PARAMETER IN STABILIZED FINITE ELEMENT APPROXIMATIONS [J].
Ainsworth, Mark ;
Allendes, Alejandro ;
Barrenechea, Gabriel R. ;
Rankin, Richard .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (03) :1585-1609
[7]   A framework for obtaining guaranteed error bounds for finite element approximations [J].
Ainsworth, Mark .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (09) :2618-2632
[8]   hp-VERSION COMPOSITE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC PROBLEMS ON COMPLICATED DOMAINS [J].
Antonietti, Paola F. ;
Giani, Stefano ;
Houston, Paul .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (03) :A1417-A1439
[9]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[10]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615