AN APPROXIMATION ALGORITHM FOR FULLY PLANAR EDGE-DISJOINT PATHS

被引:3
作者
Huang, Chien-Chung [1 ]
Mari, Mathieu [2 ]
Mathieu, Claire [3 ]
Schewior, Kevin [4 ]
Vygen, Jens [5 ]
机构
[1] Univ PSL, Ecole Normale Super, CNRS, F-75005 Paris, France
[2] Univ PSL, Comp Sci Dept, Ecole Normale Super, F-75005 Paris, France
[3] Univ Paris, CNRS, IRIF, F-75205 Paris, France
[4] Univ Cologne, Dept Math Informat, D-50931 Cologne, Germany
[5] Univ Bonn, Hausdorff Ctr Math, Res Inst Discrete Math, D-53113 Bonn, Germany
关键词
approximation algorithm; edge-disjoint paths; planar graphs; ODD CYCLES; MULTICUT; FLOW; THEOREMS; HARDNESS; RATIO; CUTS;
D O I
10.1137/20M1319401
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We devise a constant-factor approximation algorithm for the maximization version of the edge-disjoint paths problem if the supply graph together with the demand edges forms a planar graph. By planar duality, this is equivalent to packing cuts in a planar graph such that each cut contains exactly one demand edge. We also show that the natural linear programming relaxations have constant integrality gap, yielding an approximate max-multiflow min-multicut theorem.
引用
收藏
页码:752 / 769
页数:18
相关论文
共 40 条
[1]  
Andrews M., 2015, P 46 ANN IEEE S FDN, P226
[2]  
[Anonymous], 2001, J HOPKINS STUD MATH
[3]  
AUMANN Y, 1995, PROCEEDINGS OF THE SIXTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P567
[4]   Disjoint paths in sparse graphs [J].
Bentz, Cedric .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (17) :3558-3568
[5]  
Chekuri C., 2006, THEORY COMPUT, V2, P137, DOI DOI 10.4086/T0C.2006.V002A007
[6]   On the integrality ratio for TREE AUGMENTATION [J].
Cheriyan, J. ;
Karloff, H. ;
Khandekar, R. ;
Konemann, J. .
OPERATIONS RESEARCH LETTERS, 2008, 36 (04) :399-401
[7]   Almost Polynomial Hardness of Node-Disjoint Paths in Grids [J].
Chuzhoy, Julia ;
Kim, David H. K. ;
Nimavat, Rachit .
STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, :1220-1233
[8]   Improved Approximation for Node-Disjoint Paths in Planar Graphs [J].
Chuzhoy, Julia ;
Kim, David H. K. ;
Li, Shi .
STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, :556-569
[9]   New Hardness Results for Routing on Disjoint Paths [J].
Chuzhoy, Julia ;
Kim, David H. K. ;
Nimavat, Rachit .
STOC'17: PROCEEDINGS OF THE 49TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2017, :86-99
[10]  
Chuzhoy J, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P855