Homogenization in random media and effective medium theory for high frequency waves

被引:5
作者
Bal, Guillaume [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2007年 / 8卷 / 02期
关键词
homogenization; random media; high frequency waves;
D O I
10.3934/dcdsb.2007.8.473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the homogenization of the wave equation with high frequency initial conditions propagating in a medium with highly oscillatory random coefficients. By appropriate mixing assumptions on the random medium, we obtain an error estimate between the exact wave solution and the homogenized wave solution in the energy norm. This allows us to consider the limiting behavior of the energy density of high frequency waves propagating in highly heterogeneous media when the wavelength is much larger than the correlation length in the medium.
引用
收藏
页码:473 / 492
页数:20
相关论文
共 18 条
[11]  
Jikov VV., 1994, Homogenization of differential operators and integral functionals
[12]  
Kozlov S., 1979, Mat. Sb. (N.S.), V109, P188, DOI DOI 10.1070/SM1980V037N02ABEH001948
[13]  
LIONS P. -L., 1993, Revista Matematica Iberoamericana, V9, P261
[14]   Kinetic limit for wave propagation in a random medium [J].
Lukkarinen, Jani ;
Spohn, Herbert .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (01) :93-162
[15]  
OWHADI H, 2005, MATHAP0512504 ARX
[16]  
Papanicolaou GC., 1979, Random fields, V1, P835
[17]   Transport equations for elastic and other waves in random media [J].
Ryzhik, L ;
Papanicolaou, G ;
Keller, JB .
WAVE MOTION, 1996, 24 (04) :327-370
[18]  
YURINSKI .IVV, 1986, SIB MAT ZH, V27, P167