Hamel coefficients for the rotational motion of an N-dimensional rigid body

被引:14
作者
Hurtado, JE [1 ]
Sinclair, AJ [1 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2004年 / 460卷 / 2052期
关键词
hamel coefficients; N-dimensional dynamics; rigid-body mechanics;
D O I
10.1098/rspa.2004.1320
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many of the kinematic and dynamic concepts relating to rotational motion have been generalized for N-dimensional rigid bodies. In this paper a new derivation of the generalized Euler equations is presented. The development herein of the N-dimensional rotational equations of motion requires the introduction of a new symbol, which is a numerical relative tensor, to relate the elements of an N x N skew-symmetric matrix to a vector form. This symbol allows the Hamel coefficients associated with general N-dimensional rotations to be computed. Using these coefficients, Lagrange's equations are written in terms of the angular-velocity components of an N-dimensional rigid body. The new derivation provides a convenient vector form of the equations, allows the study of systems with forcing functions, and allows for the sensitivity of the kinetic energy to the generalized coordinates.
引用
收藏
页码:3613 / 3630
页数:18
相关论文
共 28 条
  • [1] BARITZHACK IY, 1990, IEEE T AUTOMAT CONTR, V35, P315
  • [2] EXTENSION OF EULER THEOREM TO N-DIMENSIONAL SPACES
    BARITZHACK, IY
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1989, 25 (06) : 903 - 909
  • [3] Bloch A.M., 2003, NONHOLONOMIC MECH CO
  • [4] The symmetric representation of the rigid body equations and their discretization
    Bloch, AM
    Crouch, PE
    Marsden, JE
    Ratiu, TS
    [J]. NONLINEARITY, 2002, 15 (04) : 1309 - 1341
  • [5] Optimal control and geodesic flows
    Bloch, AM
    Crouch, PE
    [J]. SYSTEMS & CONTROL LETTERS, 1996, 28 (02) : 65 - 72
  • [6] BOTTEMA O, 1979, THEORETICAL KINEMATI, pCH1
  • [7] BOWEN RM, 1976, INTRO VECTORS TENSOR, V1, P109
  • [8] Bryson A. E., 1975, APPL OPTIMAL CONTROL
  • [9] CAYLEY A, COLLECTED MATH PAPER, V1, P332
  • [10] Cayley A., 1846, J. fur die Reine und Angew. Math., P119, DOI DOI 10.1515/CRLL.1846.32.119