Generalized-stacking-fault energy and dislocation properties in bcc Fe:: A first-principles study -: art. no. 174105

被引:126
作者
Yan, JA [1 ]
Wang, CY
Wang, SY
机构
[1] Tsinghua Univ, Dept Phys, Beijing 100084, Peoples R China
[2] CCAST, World Lab, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1103/PhysRevB.70.174105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By using an ultrasoft pseudopotentials method based on the density-functional theory, we have calculated the generalized stacking fault (GSF) energies for the [100](110), [00 (1) over bar] (110), and [1 (1) over bar1](110) slip systems in bcc Fe within the local density approximation (LDA), spin-polarized LDA (LSDA), generalized gradient approximation (GGA), and spin-polarized GGA (SGGA). LSDA and SGGA give much higher unstable stacking fault energies than LDA and GGA. Our results show that GSF energy is sensitive to the spin state of the system. A spin-polarized calculation should be considered for the slip systems such as [1 (1) over bar1](110). From the obtained GSF energy curves, we also demonstrate the edge dislocation properties of [100](010), [00 (1) over bar](110), and 1/2 [1 (1) over bar1](110) within the framework of the Peierls-Nabarro model. It shows that the spin-polarized calculations give a narrower dislocation core width, higher unstable stacking fault energy, and larger maximum restoring stress as compared with the non-spin-polarized calculations.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 34 条
[1]   COHESIVE PROPERTIES OF IRON OBTAINED BY USE OF THE GENERALIZED GRADIENT APPROXIMATION [J].
ASADA, T ;
TERAKURA, K .
PHYSICAL REVIEW B, 1992, 46 (20) :13599-13602
[2]   Atomic structure of dislocation cores in GaN -: art. no. 205323 [J].
Béré, A ;
Serra, A .
PHYSICAL REVIEW B, 2002, 65 (20) :1-10
[3]   Semidiscrete variational Peierls framework for dislocation core properties [J].
Bulatov, VV ;
Kaxiras, E .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4221-4224
[4]  
BULLOUGH R, 1968, DISLOCATION DYNAMICS, P175
[5]   GROUND-STATE OF THE ELECTRON-GAS BY A STOCHASTIC METHOD [J].
CEPERLEY, DM ;
ALDER, BJ .
PHYSICAL REVIEW LETTERS, 1980, 45 (07) :566-569
[6]   Molecular dynamics simulations of motion of edge and screw dislocations in a metal [J].
Chang, JP ;
Cai, W ;
Bulatov, VV ;
Yip, S .
COMPUTATIONAL MATERIALS SCIENCE, 2002, 23 (1-4) :111-115
[7]   THE DISLOCATION CORE IN CRYSTALLINE MATERIALS [J].
DUESBERY, MS ;
RICHARDSON, GY .
CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 1991, 17 (01) :1-46
[8]   Ab initio study of iron and iron hydride: II. Structural and magnetic properties of close-packed Fe and FeH [J].
Elsasser, C ;
Zhu, J ;
Louie, SG ;
Meyer, B ;
Fahnle, M ;
Chan, CT .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (23) :5113-5129
[9]   Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum [J].
Fang, QF ;
Wang, R .
PHYSICAL REVIEW B, 2000, 62 (14) :9317-9324
[10]  
Friedel J., 1964, Dislocations, DOI DOI 10.1016/C2013-0-02250-5