The center and cyclicity problems for some analytic maps

被引:1
|
作者
Mencinger, Matej [1 ,2 ]
Fercec, Brigita [3 ,4 ]
机构
[1] Univ Maribor, Fac Civil Engn Transportat Engn & Architecture, Smetanova 17, SLO-2000 Maribor, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Energy Technol, Hocevarjev Trg 1, Krshko 8270, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Krekova 2, SLO-2000 Maribor, Slovenia
关键词
Discrete dynamical systems; Polynomial maps; Periodic points; Center variety; Cyclicity; CUBIC SYSTEMS; ALGEBRA;
D O I
10.1016/j.amc.2017.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The center variety and bifurcations of limit cycles from the center for maps f(x) = -Sigma(infinity)(k=0) a(k)x(k+1) arising from x + y + Sigma(n)(j=0) alpha(n-j,j)x(n-j)y(j) = 0 are considered. Motivated by a general result for n = 2l + 1 we investigate the center and cyclicity problem for n being even. We review results for n = 2 and n = 4 and perform the analysis for n = 6, 8, 10. Finally, we state some conjectures for general n = 2l. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 44 条