The center and cyclicity problems for some analytic maps

被引:1
|
作者
Mencinger, Matej [1 ,2 ]
Fercec, Brigita [3 ,4 ]
机构
[1] Univ Maribor, Fac Civil Engn Transportat Engn & Architecture, Smetanova 17, SLO-2000 Maribor, Slovenia
[2] Inst Math Phys & Mech, Jadranska 19, Ljubljana 1000, Slovenia
[3] Univ Maribor, Fac Energy Technol, Hocevarjev Trg 1, Krshko 8270, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, Krekova 2, SLO-2000 Maribor, Slovenia
关键词
Discrete dynamical systems; Polynomial maps; Periodic points; Center variety; Cyclicity; CUBIC SYSTEMS; ALGEBRA;
D O I
10.1016/j.amc.2017.02.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The center variety and bifurcations of limit cycles from the center for maps f(x) = -Sigma(infinity)(k=0) a(k)x(k+1) arising from x + y + Sigma(n)(j=0) alpha(n-j,j)x(n-j)y(j) = 0 are considered. Motivated by a general result for n = 2l + 1 we investigate the center and cyclicity problem for n being even. We review results for n = 2 and n = 4 and perform the analysis for n = 6, 8, 10. Finally, we state some conjectures for general n = 2l. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 85
页数:13
相关论文
共 44 条
  • [1] Cyclicity of some analytic maps
    Mencinger, Matej
    Fercec, Brigita
    Oliveira, Regilene
    Pagon, Dusan
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 295 : 114 - 125
  • [2] Use of cyclicity for solving some matrix problems
    Pil Seong Park
    Korean Journal of Computational & Applied Mathematics, 1998, 5 (3): : 481 - 493
  • [3] CYCLICITY OF SOME LIENARD SYSTEMS
    Li, Na
    Han, Maoan
    Romanovski, Valery G.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (06) : 2127 - 2150
  • [4] Cyclicity versus center problem
    Gasull A.
    Giné J.
    Qualitative Theory of Dynamical Systems, 2010, 9 (1-2) : 101 - 113
  • [5] Center cyclicity for some nilpotent singularities including the Z2-equivariant class
    Garcia, Isaac A.
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (07)
  • [6] Periodic points of some algebraic maps
    Romanovski, Valery G.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2007, 27 : 156 - 162
  • [7] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Emmanuel Fricain
    Javad Mashreghi
    Daniel Seco
    Computational Methods and Function Theory, 2014, 14 : 665 - 680
  • [8] Cyclicity in Reproducing Kernel Hilbert Spaces of Analytic Functions
    Fricain, Emmanuel
    Mashreghi, Javad
    Seco, Daniel
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2014, 14 (04) : 665 - 680
  • [9] Bifurcations of Periodic Points of Some Algebraic Maps
    Valery G. Romanovski
    Mathematics in Computer Science, 2007, 1 (2) : 253 - 265
  • [10] Bifurcations of Periodic Points of Some Algebraic Maps
    Romanovski, Valery G.
    MATHEMATICS IN COMPUTER SCIENCE, 2007, 1 (02) : 253 - 265