Design and Realization of Triple dsDNA Nanocomputing Circuits in Microfluidic Chips

被引:9
作者
He, Songlin [1 ,2 ,3 ,4 ]
Cui, Ruiming [5 ,6 ]
Zhang, Yao [1 ]
Yang, Yongkang [1 ]
Xu, Ziheng [1 ]
Wang, Shuoyu [1 ]
Dang, Pingxiu [1 ]
Dang, Kexin [5 ,6 ]
Ye, Qing [5 ,6 ,7 ]
Liu, Yin [1 ,7 ]
机构
[1] Nankai Univ, Sch Med, Tianjin 300071, Peoples R China
[2] Chinese Peoples Liberat Army Gen Hosp, Inst Orthoped, Med Ctr 1, Beijing 100853, Peoples R China
[3] Beijing Key Lab Regenerat Med Orthoped, Beijing 100853, Peoples R China
[4] Key Lab Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, Peoples R China
[5] Nankai Univ, Sch Phys, Key Lab Weak Light Nonlinear Photon, Minist Educ, Tianjin 300071, Peoples R China
[6] Nankai Univ, TEDA Appl Phys, Tianjin 300071, Peoples R China
[7] Nankai Univ, Nankai Univ Eye Inst, Tianjin 300071, Peoples R China
关键词
DNA nanostructure; enzyme-free logic circuit; DNA computing; microfluidic chips; T-dsDNA; ANALOG COMPUTATION; LOGIC GATES; DNA; ARCHITECTURE; PLATFORM; DEVICES; SCALE;
D O I
10.1021/acsami.1c24220
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
DNA logic gates, nanocomputing circuits, have already implemented basic computations and shown great signal potential for nano logic material application. However, the reaction temperature and computing speed still limit its development. Performing complicated computations requires a more stable component and a better computing platform. We proposed a more stable design of logic gates based on a triple, double-stranded, DNA (T-dsDNA) structure. We demonstrated a half adder and a full adder using these DNA nanocircuits and performed the computations in a microfluidic chip device at room temperature. When the solutions were mixed in the device, we obtained the expected results in real time, which suggested that the T-dsDNA combined microfluidic chip provides a concise strategy for large DNA nanocircuits.
引用
收藏
页码:10721 / 10728
页数:8
相关论文
共 50 条
[1]   MOLECULAR COMPUTATION OF SOLUTIONS TO COMBINATORIAL PROBLEMS [J].
ADLEMAN, LM .
SCIENCE, 1994, 266 (5187) :1021-1024
[2]   Dynamic DNA-toolbox reaction circuits: A walkthrough [J].
Baccouche, Alexandre ;
Montagne, Kevin ;
Padirac, Adrien ;
Fujii, Teruo ;
Rondelez, Yannick .
METHODS, 2014, 67 (02) :234-249
[3]   Addressable configurations of DNA nanostructures for rewritable memory [J].
Chandrasekaran, Arun Richard ;
Levchenko, Oksana ;
Patel, Dhruv S. ;
MacIsaac, Molly ;
Halvorsen, Ken .
NUCLEIC ACIDS RESEARCH, 2017, 45 (19) :11459-11465
[4]  
Chatterjee G, 2017, NAT NANOTECHNOL, V12, P920, DOI [10.1038/NNANO.2017.127, 10.1038/nnano.2017.127]
[5]   Programmable chemical controllers made from DNA [J].
Chen, Yuan-Jyue ;
Dalchau, Neil ;
Srinivas, Niranjan ;
Phillips, Andrew ;
Cardelli, Luca ;
Soloveichik, David ;
Seelig, Georg .
NATURE NANOTECHNOLOGY, 2013, 8 (10) :755-762
[6]   Micro Total Analysis Systems: Fundamental Advances and Biological Applications [J].
Culbertson, Christopher T. ;
Mickleburgh, Tom G. ;
Stewart-James, Samantha A. ;
Sellens, Kathleen A. ;
Pressnall, Melissa .
ANALYTICAL CHEMISTRY, 2014, 86 (01) :95-118
[7]   Computing exponentially faster: implementing a non- deterministic universal Turing machine using DNA [J].
Currin, Andrew ;
Korovin, Konstantin ;
Ababi, Maria ;
Roper, Katherine ;
Kell, Douglas B. ;
Day, Philip J. ;
King, Ross D. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2017, 14 (128)
[8]   Enzyme-Regulated DNA-Based Logic Device [J].
Debnath, Manish ;
Paul, Rakesh ;
Panda, Deepanjan ;
Dash, Jyotirmayee .
ACS SYNTHETIC BIOLOGY, 2018, 7 (05) :1456-1464
[9]   THE HELICAL REPEAT OF DNA AT HIGH-TEMPERATURE [J].
DUGUET, M .
NUCLEIC ACIDS RESEARCH, 1993, 21 (03) :463-468
[10]  
Eckhoff G., 2010, J Syst Chem, V1, P13, DOI [DOI 10.1186/1759-2208-1-13, 10.1186/1759-2208-1-13]