Commutators of Singular Integrals with Kernels Satisfying Generalized Hormander Conditions and Extrapolation Results to the Variable Exponent Spaces

被引:1
|
作者
Melchiori, Luciana [1 ]
Pradolini, Gladis [1 ]
机构
[1] UNL, Fac Ingn Quim, CONICET, Santa Fe, Argentina
关键词
Commutators; Variable Lebesgue spaces; Extrapolation; WEIGHTED NORM INEQUALITIES; LIPSCHITZ FUNCTIONS; MAXIMAL FUNCTIONS; OPERATORS; LEBESGUE; BOUNDEDNESS; TRANSFORMS;
D O I
10.1007/s11118-018-9726-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain boundedness results for the higher order commutators of singular integral operators between weighted Lebesgue spaces, including L-p-BMO and L-p-Lipschitz estimates. The kernels of such operators satisfy certain regularity condition, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of singular integral operators with less regular kernels satisfying a Hormander's type inequality. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p. Finally, by extrapolation techniques, we derive different results in the variable exponent context.
引用
收藏
页码:579 / 601
页数:23
相关论文
共 42 条
  • [11] Singular integrals and commutators in generalized Morrey spaces
    Softova, Lubomiea
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (03) : 757 - 766
  • [12] MAXIMAL AND SINGULAR INTEGRAL OPERATORS AND THEIR COMMUTATORS ON GENERALIZED WEIGHTED MORREY SPACES WITH VARIABLE EXPONENT
    Guliyev, Vagif S.
    Hasanov, Javanshir J.
    Badalov, Xayyam A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (01): : 41 - 61
  • [13] Commutators of Parabolic Singular Integrals on the Generalized Morrey Spaces
    Chen, Yan-ping
    Ding, Yong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02): : 367 - 378
  • [14] Commutators of Parabolic Singular Integrals on the Generalized Morrey Spaces
    Yan-ping CHEN
    Yong DING
    Acta Mathematicae Applicatae Sinica, 2014, (02) : 367 - 378
  • [15] Commutators of parabolic singular integrals on the generalized Morrey spaces
    Yan-ping Chen
    Yong Ding
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 367 - 378
  • [16] SINGULAR INTEGRAL OPERATORS WITH ROUGH KERNELS ON CENTRAL MORREY SPACES WITH VARIABLE EXPONENT
    Fu, Zunwei
    Lu, Shanzhen
    Wang, Hongbin
    Wang, Liguang
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 505 - 522
  • [17] ON MULTILINEAR COMMUTATORS OF MARCINKIEWICZ INTEGRALS IN VARIABLE EXPONENT LEBESGUE AND HERZ TYPE SPACES
    Wang, Liwei
    Shu, Lisheng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (01): : 77 - 96
  • [18] Multilinear Singular Integrals and their Commutators with Nonsmooth Kernels on Weighted Morrey Spaces
    Wang, Songbai
    Jiang, Yinsheng
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [19] Commutators of Lipschitz Functions and Singular Integrals with Non-Smooth Kernels on Euclidean Spaces
    Hung Viet Le
    Analysis in Theory and Applications, 2016, 32 (02) : 135 - 148
  • [20] Morrey Meets Herz with Variable Exponent and Applications to Commutators of Homogeneous Fractional Integrals with Rough Kernels
    Wang, Hongbin
    Wang, Jiajia
    Fu, Zunwei
    JOURNAL OF FUNCTION SPACES, 2017, 2017