Proof of a conjecture of Polya on the zeros of successive derivatives of real entire functions

被引:19
作者
Bergweiler, Walter [1 ]
Eremenko, Alexandre
机构
[1] Univ Kiel, Math Seminar, DE-24098 Kiel, Germany
[2] Purdue Univ, Dept Math, W Lafayette, IN 47906 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s11511-006-0010-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove Pólya's conjecture of 1943: For a real entire function of order greater than 2 with finitely many non-real zeros, the number of non-real zeros of the nth derivative tends to infinity, as ntoinfty. We use the saddle point method and potential theory, combined with the theory of analytic functions with positive imaginary part in the upper half-plane. © 2007 Institut Mittag-Leffler.
引用
收藏
页码:145 / 166
页数:22
相关论文
共 32 条