Theory of non-equilibrium 'hot' carriers in direct band-gap semiconductors under continuous illumination

被引:8
作者
Sarkar, Subhajit [1 ,2 ]
Un, Ieng-Wai [2 ]
Sivan, Yonatan [2 ]
Dubi, Yonatan [1 ,3 ]
机构
[1] Ben Gurion Univ Negev, Dept Chem, Beer Sheva, Israel
[2] Ben Gurion Univ Negev, Sch Elect & Comp Engn, Beer Sheva, Israel
[3] Ben Gurion Univ Negev, Ilse Katz Ctr Nanoscale Sci & Technol, Beer Sheva, Israel
基金
以色列科学基金会;
关键词
CW illuminated semiconductor; steady-state properties of hot carriers; coupled Boltzmann-heat equation; hot carrier photoluminescence; SOLAR-CELLS; ELECTRON-SCATTERING; AUGER RECOMBINATION; RELAXATION; SIMULATION; LASERS; GAAS; PHOTOLUMINESCENCE; PRINCIPLES; PARAMETERS;
D O I
10.1088/1367-2630/ac6688
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interplay between the illuminated excitation of carriers and subsequent thermalization and recombination leads to the formation of non-equilibrium distributions for the 'hot' carriers and to heating of both electrons, holes and phonons. In spite of the fundamental and practical importance of these processes, there is no theoretical framework which encompasses all of them and provides a clear prediction for the non-equilibrium carrier distributions. Here, a self-consistent theory accounting for the interplay between excitation, thermalization, and recombination in continuously-illuminated semiconductors is presented, enabling the calculation of non-equilibrium carrier distributions. We show that counter-intuitively, distributions deviate more from equilibrium under weak illumination than at high intensities. We mimic two experimental procedures to extract the carrier temperatures and show that they yield different dependence on illumination. Finally, we provide an accurate way to evaluate photoluminescence efficiency, which, unlike conventional models, predicts correctly the experimental results. These results provide a starting point towards examining how non-equilibrium features will affect properties hot-carrier based application.
引用
收藏
页数:22
相关论文
共 91 条
[1]   The effect of Auger heating on intraband carrier relaxation in semiconductor quantum rods [J].
Achermann, Marc ;
Bartko, Andrew P. ;
Hollingsworth, Jennifer A. ;
Klimov, Victor I. .
NATURE PHYSICS, 2006, 2 (08) :557-561
[2]   Efficient stochastic simulation of rate equations and photon statistics of nanolasers [J].
Andre, Emil C. ;
Mork, Jesper ;
Wubs, Martijn .
OPTICS EXPRESS, 2020, 28 (22) :32632-32646
[3]  
Ashcroft N. W., 1976, Solid State Physics
[4]   Hot carrier impact on photovoltage formation in solar cells [J].
Asmontas, S. ;
Gradauskas, J. ;
Suziedelis, A. ;
Silenas, A. ;
Sirmulis, E. ;
Svedas, V. ;
Vaicikauskas, V. ;
Zalys, O. .
APPLIED PHYSICS LETTERS, 2018, 113 (07)
[5]   DIELECTRIC FUNCTIONS AND OPTICAL-PARAMETERS OF SI, GE, GAP, GAAS, GASB, INP, INAS, AND INSB FROM 1.5 TO 6.0 EV [J].
ASPNES, DE ;
STUDNA, AA .
PHYSICAL REVIEW B, 1983, 27 (02) :985-1009
[6]  
Bebb HB., 1972, Photoluminescence I: Theory, P181
[7]   FEMTOSECOND PHOTON-ECHOES FROM BAND-TO-BAND TRANSITIONS IN GAAS [J].
BECKER, PC ;
FRAGNITO, HL ;
CRUZ, CHB ;
FORK, RL ;
CUNNINGHAM, JE ;
HENRY, JE ;
SHANK, CV .
PHYSICAL REVIEW LETTERS, 1988, 61 (14) :1647-1649
[8]   Ab initio study of hot electrons in GaAs [J].
Bernardi, Marco ;
Vigil-Fowler, Derek ;
Ong, Chin Shen ;
Neaton, Jeffrey B. ;
Louie, Steven G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (17) :5291-5296
[9]   Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles [J].
Brown, Ana M. ;
Sundararaman, Ravishankar ;
Narang, Prineha ;
Schwartzberg, Adam M. ;
Goddard, William A., III ;
Atwater, Harry A. .
PHYSICAL REVIEW LETTERS, 2017, 118 (08)
[10]   Hot-Carrier Extraction in Nanowire-Nanoantenna Photovoltaic Devices [J].
Chen, I-Ju ;
Limpert, Steven ;
Metaferia, Wondwosen ;
Thelander, Claes ;
Samuelson, Lars ;
Capasso, Federico ;
Burke, Adam M. ;
Linke, Heiner .
NANO LETTERS, 2020, 20 (06) :4064-4072