TAME AUTOMORPHISMS WITH MULTIDEGREES IN THE FORM OF ARITHMETIC PROGRESSIONS

被引:1
作者
Li, Jiantao [1 ]
Du, Xiankun [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110031, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
tame automorphism; multidegree; elementary reduction; arithmetic progression;
D O I
10.1515/ms-2015-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a, a + d, a + 2d) be an arithmetic progression of positive integers. The following statements are proved: (1) If a vertical bar 2d, then (a, a + d, a + 2d) is an element of mdeg(Tame(C-3)). (2) If a inverted iota 2d and (a, a + d, a + 2d) is not an element of {(4i, 5i, 6i), (4i, 7i, 10i) : i is an element of N+}, then (a, a + d, a + 2d) is not an element of mdeg(Tame(C-3)). (C) 2015 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1261 / 1270
页数:10
相关论文
共 50 条
[41]   COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS [J].
Pach, J. ;
Tomon, I. .
ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) :507-515
[42]   Maximal arithmetic progressions in random subsets [J].
Benjamini, Itai ;
Yadin, Ariel ;
Zeitouni, Ofer .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 :365-376
[43]   The Dirichlet Divisor Problem of Arithmetic Progressions [J].
Liu, H. Q. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03) :592-598
[44]   An additive problem with primes in arithmetic progressions [J].
Zhang, ZF .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (01) :155-168
[45]   Colorings with only rainbow arithmetic progressions [J].
J. Pach ;
I. Tomon .
Acta Mathematica Hungarica, 2020, 161 :507-515
[46]   A set of squares without arithmetic progressions [J].
Gyarmati, Katalin ;
Ruzsa, Imre Z. .
ACTA ARITHMETICA, 2012, 155 (01) :109-115
[47]   PRIMES AND CONSECUTIVE SUMS IN ARITHMETIC PROGRESSIONS [J].
BESLIN, SJ ;
KORTRIGHT, EV .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1993, 49 (3-4) :157-162
[48]   Strings of special primes in arithmetic progressions [J].
Keenan Monks ;
Sarah Peluse ;
Lynnelle Ye .
Archiv der Mathematik, 2013, 101 :219-234
[49]   An Additive Problem with Primes in Arithmetic Progressions [J].
Zhen Feng ZHANG State Key Laboratory of Information SecurityInstitute of SoftwareChinese Academy of SciencesBeijing PRChina .
ActaMathematicaSinica(EnglishSeries), 2005, 21 (01) :155-168
[50]   CONTRIBUTIONS TO THE ERDOS' CONJECTURE ON ARITHMETIC PROGRESSIONS [J].
Witula, Roman ;
Slota, Damian .
DEMONSTRATIO MATHEMATICA, 2009, 42 (02) :265-268