TAME AUTOMORPHISMS WITH MULTIDEGREES IN THE FORM OF ARITHMETIC PROGRESSIONS

被引:1
作者
Li, Jiantao [1 ]
Du, Xiankun [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110031, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
tame automorphism; multidegree; elementary reduction; arithmetic progression;
D O I
10.1515/ms-2015-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a, a + d, a + 2d) be an arithmetic progression of positive integers. The following statements are proved: (1) If a vertical bar 2d, then (a, a + d, a + 2d) is an element of mdeg(Tame(C-3)). (2) If a inverted iota 2d and (a, a + d, a + 2d) is not an element of {(4i, 5i, 6i), (4i, 7i, 10i) : i is an element of N+}, then (a, a + d, a + 2d) is not an element of mdeg(Tame(C-3)). (C) 2015 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1261 / 1270
页数:10
相关论文
共 50 条
[31]   Distinct distances and arithmetic progressions [J].
Dumitrescu, Adrian .
DISCRETE APPLIED MATHEMATICS, 2019, 256 :38-41
[32]   Covering intervals with arithmetic progressions [J].
Balister, P. ;
Bollobas, B. ;
Morris, R. ;
Sahasrabudhe, J. ;
Tiba, M. .
ACTA MATHEMATICA HUNGARICA, 2020, 161 (01) :197-200
[33]   On the Partitions of a Number into Arithmetic Progressions [J].
Munagi, Augustine O. ;
Shonhiwa, Temba .
JOURNAL OF INTEGER SEQUENCES, 2008, 11 (05)
[34]   Longest arithmetic progressions of palindromes [J].
Pongsriiam, Prapanpong .
JOURNAL OF NUMBER THEORY, 2021, 222 :362-375
[35]   On the maximal length of arithmetic progressions [J].
Zhao, Minzhi ;
Zhang, Huizeng .
ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18 :1-21
[36]   Arithmetic progressions, quasi progressions, and Gallai-Ramsey colorings [J].
Mao, Yaping ;
Ozeki, Kenta ;
Robertson, Aaron ;
Wang, Zhao .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 193
[37]   p-Conjecture for tame automorphisms of C3 [J].
Holik, Daria ;
Karas, M. .
ALGEBRA AND DISCRETE MATHEMATICS, 2025, 39 (01) :97-109
[38]   ON ARITHMETIC PROGRESSIONS ON GENUS TWO CURVES [J].
Ulas, Maciej .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2009, 39 (03) :971-980
[39]   The Riemann Zeta Function on Arithmetic Progressions [J].
Steuding, Joern ;
Wegert, Elias .
EXPERIMENTAL MATHEMATICS, 2012, 21 (03) :235-240
[40]   COLORINGS WITH ONLY RAINBOW ARITHMETIC PROGRESSIONS [J].
Pach, J. ;
Tomon, I. .
ACTA MATHEMATICA HUNGARICA, 2020, 161 (02) :507-515