TAME AUTOMORPHISMS WITH MULTIDEGREES IN THE FORM OF ARITHMETIC PROGRESSIONS

被引:0
作者
Li, Jiantao [1 ]
Du, Xiankun [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110031, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
tame automorphism; multidegree; elementary reduction; arithmetic progression;
D O I
10.1515/ms-2015-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a, a + d, a + 2d) be an arithmetic progression of positive integers. The following statements are proved: (1) If a vertical bar 2d, then (a, a + d, a + 2d) is an element of mdeg(Tame(C-3)). (2) If a inverted iota 2d and (a, a + d, a + 2d) is not an element of {(4i, 5i, 6i), (4i, 7i, 10i) : i is an element of N+}, then (a, a + d, a + 2d) is not an element of mdeg(Tame(C-3)). (C) 2015 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1261 / 1270
页数:10
相关论文
共 50 条
  • [21] Arithmetic Progressions on Edwards Curves
    Moody, Dustin
    JOURNAL OF INTEGER SEQUENCES, 2011, 14 (01)
  • [22] Sums of divisors on arithmetic progressions
    Pongsriiam, Prapanpong
    PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (02) : 443 - 460
  • [23] THE DIVISOR PROBLEM FOR ARITHMETIC PROGRESSIONS
    LI, HZ
    CHINESE SCIENCE BULLETIN, 1995, 40 (04): : 265 - 267
  • [24] Arithmetic Progressions on Huff Curves
    Choudhry, Ajai
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (05)
  • [25] ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS
    Banks, William D.
    Pomerance, Carl
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 88 (03) : 313 - 321
  • [26] TAME AUTOMORPHISMS OF ELEMENTARY FREE GROUPS
    Fine, Benjamin
    Kharlampovich, Olga G.
    Myasnikov, Alexei G.
    Remeslennikov, Vladimir N.
    Rosenberger, G.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (08) : 3386 - 3394
  • [27] CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS
    Matomaki, Kaisa
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2013, 94 (02) : 268 - 275
  • [28] Arithmetic progressions and Pellian equations
    Aguirre, Julian
    Dujella, Andrej
    Carlos Peral, Juan
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2013, 83 (04): : 683 - 695
  • [29] Quotients of primes in arithmetic progressions
    Micholson, Ace
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2012, 18 (02) : 56 - 57
  • [30] Covering intervals with arithmetic progressions
    P. Balister
    B. Bollobás
    R. Morris
    J. Sahasrabudhe
    M. Tiba
    Acta Mathematica Hungarica, 2020, 161 : 197 - 200