TAME AUTOMORPHISMS WITH MULTIDEGREES IN THE FORM OF ARITHMETIC PROGRESSIONS

被引:0
|
作者
Li, Jiantao [1 ]
Du, Xiankun [2 ]
机构
[1] Liaoning Univ, Sch Math, Shenyang 110031, Peoples R China
[2] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
关键词
tame automorphism; multidegree; elementary reduction; arithmetic progression;
D O I
10.1515/ms-2015-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (a, a + d, a + 2d) be an arithmetic progression of positive integers. The following statements are proved: (1) If a vertical bar 2d, then (a, a + d, a + 2d) is an element of mdeg(Tame(C-3)). (2) If a inverted iota 2d and (a, a + d, a + 2d) is not an element of {(4i, 5i, 6i), (4i, 7i, 10i) : i is an element of N+}, then (a, a + d, a + 2d) is not an element of mdeg(Tame(C-3)). (C) 2015 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1261 / 1270
页数:10
相关论文
共 50 条