Vector variational principle

被引:42
作者
Bednarczuk, Ewa M. [1 ,2 ]
Zagrodny, Dariusz [1 ,2 ]
机构
[1] Cardinal Stefan Wyszynski Univ, Warsaw, Poland
[2] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
Vector variational principle; Countably orderable sets; Nemeth approximate solutions; Ekeland's variational principle; PRODUCT-SPACES; PARETO EFFICIENCY; NUCLEAR CONES; POINTS;
D O I
10.1007/s00013-009-0072-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove an Ekeland's type vector variational principle for monotonically semicontinuous mappings with perturbations given by a convex bounded subset of directions multiplied by the distance function. This generalizes the existing results where directions of perturbations are singletons.
引用
收藏
页码:577 / 586
页数:10
相关论文
共 24 条
[1]  
[Anonymous], 1975, GEOMETRIC FUNCTIONAL
[2]  
Bao TQ, 2007, CONTROL CYBERN, V36, P531
[3]   The vector-valued variational principle in Banach spaces ordered by cones with nonempty interiors [J].
Bednarczuk, Ewa M. ;
Przybyla, Maciej J. .
SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (03) :907-913
[4]  
CAMMAROTO F, 1996, B POLISH ACAD SCI, V44, P29
[5]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[6]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[7]  
FANG JX, 1996, J MATH ANAL APPL, V208, P389
[8]   Vector-valued variational principles [J].
Finet, C ;
Quarta, L ;
Troestler, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (01) :197-218
[9]  
Finet C., 2001, J NONLINEAR CONVEX A, V2, P167
[10]  
Gajek L., 1992, Optimization, V26, P287, DOI 10.1080/02331939208843858