Wave processes in media with hysteretic nonlinearity. Part I

被引:47
作者
Nazarov, VE [1 ]
Radostin, AV [1 ]
Ostrovsky, LA [1 ]
Soustova, IA [1 ]
机构
[1] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/1.1574363
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Two phenomenological models of hysteretic equations of state for media with imperfect elasticity are described and compared. On the basis of these equations, a theoretical study of nonlinear effects caused by the acoustic wave propagation in an unbounded medium is performed. The profiles, parameters, and spectra of C waves are determined. The distinctive features of nonlinear wave processes in such media are revealed, so that these features can be used to choose the appropriate hysteretic equation of state for analytically describing the experimental data. (C) 2003 MAIK "Nauka/Interperiodica".
引用
收藏
页码:344 / 353
页数:10
相关论文
共 46 条
[41]  
Rudenko O. V., 1977, Theoretical Foundations of Nonlinear Acoustics
[42]   Laboratory study of linear and nonlinear elastic pulse propagation in sandstone [J].
TenCate, JA ;
VanDenAbeele, KEA ;
Shankland, TJ ;
Johnson, PA .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 100 (03) :1383-1391
[43]   On the quasi-analytic treatment of hysteretic nonlinear response in elastic wave propagation [J].
VandenAbeele, KEA ;
Johnson, PA ;
Guyer, RA ;
McCall, KR .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 101 (04) :1885-1898
[44]  
Zaitsev BD, 1999, ACOUST PHYS+, V45, P196
[45]  
Zarembo L.K., 1966, Introduction to Nonlinear Acoustics
[46]  
ZIMENKOV SV, 1993, FIZ ZEMLI+, P13