Semiglobal boundary rigidity for Riemannian metrics

被引:48
作者
Lassas, M
Sharafutdinov, V
Uhlmann, G
机构
[1] Univ Helsinki, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
D O I
10.1007/s00208-002-0407-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:767 / 793
页数:27
相关论文
共 20 条
[1]  
[Anonymous], TRANSLATION MATH MON
[2]  
BERGH J, 1976, GRUNDLEHREN MATH WIS
[3]  
BERNSTEIN IN, 1980, COMPUTERIZED SEISMOL, V13, P50
[4]   FINITENESS THEOREMS FOR RIEMANNIAN MANIFOLDS [J].
CHEEGER, J .
AMERICAN JOURNAL OF MATHEMATICS, 1970, 92 (01) :61-&
[5]   RIGIDITY FOR SURFACES OF NONPOSITIVE CURVATURE [J].
CROKE, CB .
COMMENTARII MATHEMATICI HELVETICI, 1990, 65 (01) :150-169
[6]   Local boundary rigidity of a compact Riemannian manifold with curvature bounded above [J].
Croke, CB ;
Dairbekov, NS ;
Sharafutdinov, VA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (09) :3937-3956
[7]  
CROKE CB, 1991, J DIFFER GEOM, V33, P445
[8]  
GROMOV M, 1983, J DIFFER GEOM, V18, P1
[9]  
Hartman P, 1964, ORDINARY DIFFERENTIA
[10]  
Herglotz G., 1905, Zeitschr. fur Math. Phys, V52, P275